Navigation Links
Strange diet for methane consuming microorganisms
Date:11/6/2012

This press release is available in German.

Methane is formed under the absence of oxygen by natural biological and physical processes, e.g. in the sea floor. It is a much more powerful greenhouse gas than carbon dioxide. Thanks to the activity of microorganisms this gas is inactivated before it reaches the atmosphere and unfolds its harmful effects on Earth's climate. Researchers from Bremen have now proven that these microorganisms are quite picky about their diet.

All life on Earth is based on carbon and its compounds. Cell components of all creatures contain carbon. The cell can take up this basic structural element via organic matter or builds up its own organic matter from scratch, i.e. carbon dioxide. Researchers termed the first type of cells heterotrophs and the latter autotrophs. All plants, many bacteria and archaea are autotrophs, whereas all animals, including humans, are heterotrophs. The autotrophs form the basis for the life of the heterotrophs and all higher life by taking up inorganic carbon to form organic material.

To keep the cellular systems running all cells need fuel. Methane can be such a fuel. When studying the methane consuming microbes discovered by Bremen scientists more than ten years ago, it was assumed that they take the methane for filling up their energy tanks and use it as a carbon source, i.e., they were thought to be heterotrophs.

Now scientists from MARUM and the Max Planck Institute for Marine Microbiology have shown that this is surprisingly not the case: the methane derived carbon is not used as a carbon source. "Our growth studies clearly show that the labelled carbon in the methane never showed up in the cell material, but experiments with labelled carbon from carbon dioxide did. It was quite surprising," says author Matthias Kellermann. The archaea in the consortia behave as expected for chemoautotrophs. "Archaea and the sulphate reducing bacteria are living closely together in consortia, which grow extremely slowly. And it was only in the newly synthesised cell materia that we could find the answer for the question from where the carbon originates," adds Kai-Uwe Hinrichs, leader of the organic geochemistry group at MARUM.

Co-author Gunter Wegener from the Max Planck Institute concludes: "With our new knowledge we can optimise our studies about the inactivation of methane in nature. Our surprising results tell us that we still know very few details of this globally important process."

Samples were retrieved from the Guaymas Basin on the West coast of Mexico from a depth of more the 2000 metres using the US diving submersible Alvin.


'/>"/>
Contact: Dr. Manfred Schloesser
mschloes@mpi-bremen.de
49-421-202-8704
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. It must be important but what does it do? The strange case of UCP2
2. Mafic melts, methane seeps, 2 million waves, foreign magma, and the invisible hand
3. Ammonites found mini oases at ancient methane seeps
4. Study: Seeking Arctic methane has serious implications for Florida coastline
5. Study: Seeping Arctic methane has serious implications for Florida coastline
6. Stanford-Penn State scientists use microbes to make clean methane
7. Microbes make clean methane
8. Are methane hydrates dissolving?
9. How methane becomes fish food
10. Study identifies prime source of ocean methane
11. Research on carbon-consuming life-forms in Antarctica published in JoVE
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Strange diet for methane consuming microorganisms
(Date:4/13/2017)... 13, 2017 UBM,s Advanced Design and Manufacturing ... feature emerging and evolving technology through its 3D Printing ... run alongside the expo portion of the event and ... demonstrations focused on trending topics within 3D printing and ... manufacturing event will take place June 13-15, 2017 at the ...
(Date:4/11/2017)... , April 11, 2017 Crossmatch®, a ... authentication solutions, today announced that it has been ... Research Projects Activity (IARPA) to develop next-generation Presentation ... "Innovation has been a driving force ... program will allow us to innovate and develop ...
(Date:4/11/2017)... 11, 2017 No two people are ... the New York University Tandon School of Engineering ... found that partial similarities between prints are common ... mobile phones and other electronic devices can be ... vulnerability lies in the fact that fingerprint-based authentication ...
Breaking Biology News(10 mins):
(Date:6/14/2017)... PA (PRWEB) , ... June 14, 2017 , ... The ... to discover new therapeutic antibodies using rabbits that express human genes. ATGC, a spin ... , Founded in 2015, ATGC is a translational genomics company. Its founders ...
(Date:6/14/2017)... , ... June 13, 2017 ... ... holistic approach for understanding the phenotype of an organism on a molecular ... throughput and complicated data processing remain major bottlenecks to biomarker discovery in ...
(Date:6/13/2017)... ... June 13, 2017 , ... ... chosen The Copley Consulting Group to facilitate and deploy Infor’s CloudSuite Industrial ... manufacturing operations and strategic initiatives to increasing customer demands. , “The clients ...
(Date:6/13/2017)... ... June 13, 2017 , ... DuPont Industrial Biosciences ... Chemical Society (ACS) Green Chemistry Institute’s 21st Annual Green Chemistry & Engineering ... address other business leaders, policy makers, educators, students and professionals from the scientific ...
Breaking Biology Technology: