Navigation Links
Stowers Institute's Baumann Lab identifies key step in maturation pathway of telomerase
Date:12/5/2008

The Stowers Institute's Baumann Lab has discovered an important step in the maturation pathway of telomerase, the enzyme that replenishes the sequences that are lost at chromosome ends with every cell division. The findings were published today in the Advance Online Publication of Nature.

Telomerase is viewed as a promising cancer treatment target because its inhibition selectively kills cancer cells. In order to identify small molecules that block telomerase, it is critical to decipher how the enzyme is made and assembled from its components. Telomerase uses part of an RNA subunit as a template to add telomeric DNA to the ends of chromosomes. The Baumann Lab found that this RNA subunit is first made as a longer inactive form that must be processed into a shorter mature form for telomerase to function.

"We discovered a new pathway of RNA 3' end (tail end) processing," said Jeremy Bunch, Research Technician III and co-equal first author on the paper. "The 3' ends of many RNAs must be processed to produce a mature and functional form. Generally, this involves exonucleolytic degradation, the gradual removal of nucleotides one at a time until the mature end has been reached. Some RNAs are cleaved near the end before exonucleolytic degradation proceeds to generate the mature end. We now show that 3' end processing for telomerase RNA uses a fundamentally different and novel pathway."

"We demonstrate that the machinery that removes introns from messenger RNAs also functions in generating the mature 3' end of the telomerase RNA subunit," said Jessica Box, Research Technician I and co-equal first author on the paper. "It was highly unexpected that the spliceosome could have such a function, as the two steps of removing an internal piece of RNA and gluing the flanking ends together are tightly coupled during intron removal. To our knowledge this is the first example where uncoupling of the first and second step of splicing generates a functional product in a single-step reaction."

The work sheds light on human health by demonstrating that interfering with telomerase maturation can inactivate telomerase. Because finding inhibitors for telomerase has been challenging, the identification of a whole set of potential new targets is welcome news for researchers in the Baumann Lab.

"If we can now identify those factors that are specifically required for telomerase processing, we could have new targets for telomerase inhibition in cancer cells," said Peter Baumann, Ph.D., Assistant Investigator and senior author on the paper. "Defects in the processing machinery for human telomerase are also likely to compromise telomerase function and may thus contribute to diseases such as dyskeratosis congenita, aplastic anemia, and idiopathic pulmonary fibrosis."


'/>"/>

Contact: Marie Jennings
mfj@stowers-institute.org
816-926-4015
Stowers Institute for Medical Research
Source:Eurekalert

Related biology news :

1. Stowers Institutes Linheng Li Lab expands understanding of bone marrow stem cell niche
2. Stowers Institutes Workman Lab discovers novel histone demethylase protein complex
3. Stowers Institutes Shilatifard Lab identifies new role for factor critical to transcription
4. Stowers Institute researchers identify gene linked to vertebral defects in patient populations
5. Stowers Proteomics Center devises method for assigning probabilities to human protein interactions
6. Stowers Institutes Hawley Lab identifies factors responsible for restart of meiotic cycle
7. Stowers Institutes Xie Lab demonstrates dual intrinsic and extrinsic control of stem cell aging
8. New study spotlights National Institutes of Health grant outcomes for clinical research
9. National Institutes of Health award Williams professor $217,710 research grant
10. Baumann lab identifies elusive telomere RNA subunit in single cell model
11. Study identifies genetic variants giving rise to differences in metabolism
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/24/2017)... Mar 24, 2017 Research and Markets has ... Market Analysis & Trends - Industry Forecast to 2025" report ... ... at a CAGR of around 15.1% over the next decade to ... report analyzes the market estimates and forecasts for all the given ...
(Date:3/23/2017)... -- Research and Markets has announced the addition of ... Industry Forecast to 2025" report to their offering. ... The Global Vehicle Anti-Theft ... 8.8% over the next decade to reach approximately $14.21 billion by ... and forecasts for all the given segments on global as well ...
(Date:3/22/2017)... Optimove , provider of the ... as 1-800-Flowers and AdoreMe, today announced two new ... Using Optimove,s machine learning algorithms, these features allow ... recommendations to their customers based not just on ... intent drawn from a complex web of data ...
Breaking Biology News(10 mins):
(Date:3/24/2017)... , March 24, 2017 Sinovac Biotech Ltd. ("Sinovac" ... in China , today announced that its board ... expiration date of the plan from March 27, 2017 to March ... About Sinovac Biotech Ltd. ... Sinovac Biotech Ltd. is a ...
(Date:3/23/2017)... ... March 23, 2017 , ... AxioMed president, ... viscous and elastic characteristics when deformed, which is identical to how the human ... absorb compressive forces and return to its natural state along a hysteresis curve, ...
(Date:3/23/2017)... March 23, 2017  SeraCare Life Sciences, ... in vitro diagnostics manufacturers and clinical laboratories, ... first multiplexed Inherited Cancer reference material ... by next-generation sequencing (NGS). The Seraseq™ Inherited Cancer ... input from industry experts to validate the ...
(Date:3/23/2017)... SEATTLE , March 23, 2017 ... translational development of novel therapies in immuno-oncology, today ... to lead" small molecule compounds that activate interferon ... (RLR) pathways and demonstrate immune-mediated tumor regression in ... in the study who demonstrated complete tumor regression ...
Breaking Biology Technology: