Navigation Links
Stowers Institute's Baumann Lab identifies key step in maturation pathway of telomerase
Date:12/5/2008

The Stowers Institute's Baumann Lab has discovered an important step in the maturation pathway of telomerase, the enzyme that replenishes the sequences that are lost at chromosome ends with every cell division. The findings were published today in the Advance Online Publication of Nature.

Telomerase is viewed as a promising cancer treatment target because its inhibition selectively kills cancer cells. In order to identify small molecules that block telomerase, it is critical to decipher how the enzyme is made and assembled from its components. Telomerase uses part of an RNA subunit as a template to add telomeric DNA to the ends of chromosomes. The Baumann Lab found that this RNA subunit is first made as a longer inactive form that must be processed into a shorter mature form for telomerase to function.

"We discovered a new pathway of RNA 3' end (tail end) processing," said Jeremy Bunch, Research Technician III and co-equal first author on the paper. "The 3' ends of many RNAs must be processed to produce a mature and functional form. Generally, this involves exonucleolytic degradation, the gradual removal of nucleotides one at a time until the mature end has been reached. Some RNAs are cleaved near the end before exonucleolytic degradation proceeds to generate the mature end. We now show that 3' end processing for telomerase RNA uses a fundamentally different and novel pathway."

"We demonstrate that the machinery that removes introns from messenger RNAs also functions in generating the mature 3' end of the telomerase RNA subunit," said Jessica Box, Research Technician I and co-equal first author on the paper. "It was highly unexpected that the spliceosome could have such a function, as the two steps of removing an internal piece of RNA and gluing the flanking ends together are tightly coupled during intron removal. To our knowledge this is the first example where uncoupling of the first and second step of splicing generates a functional product in a single-step reaction."

The work sheds light on human health by demonstrating that interfering with telomerase maturation can inactivate telomerase. Because finding inhibitors for telomerase has been challenging, the identification of a whole set of potential new targets is welcome news for researchers in the Baumann Lab.

"If we can now identify those factors that are specifically required for telomerase processing, we could have new targets for telomerase inhibition in cancer cells," said Peter Baumann, Ph.D., Assistant Investigator and senior author on the paper. "Defects in the processing machinery for human telomerase are also likely to compromise telomerase function and may thus contribute to diseases such as dyskeratosis congenita, aplastic anemia, and idiopathic pulmonary fibrosis."


'/>"/>

Contact: Marie Jennings
mfj@stowers-institute.org
816-926-4015
Stowers Institute for Medical Research
Source:Eurekalert

Related biology news :

1. Stowers Institutes Linheng Li Lab expands understanding of bone marrow stem cell niche
2. Stowers Institutes Workman Lab discovers novel histone demethylase protein complex
3. Stowers Institutes Shilatifard Lab identifies new role for factor critical to transcription
4. Stowers Institute researchers identify gene linked to vertebral defects in patient populations
5. Stowers Proteomics Center devises method for assigning probabilities to human protein interactions
6. Stowers Institutes Hawley Lab identifies factors responsible for restart of meiotic cycle
7. Stowers Institutes Xie Lab demonstrates dual intrinsic and extrinsic control of stem cell aging
8. New study spotlights National Institutes of Health grant outcomes for clinical research
9. National Institutes of Health award Williams professor $217,710 research grant
10. Baumann lab identifies elusive telomere RNA subunit in single cell model
11. Study identifies genetic variants giving rise to differences in metabolism
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/26/2016)... India and LONDON ... Infosys Finacle, part of EdgeVerve Systems, a product ... and Onegini today announced a partnership to integrate ... solutions.      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ... to provide their customers enhanced security to access ...
(Date:4/19/2016)... 20, 2016 The new GEZE ... compact web-based "all-in-one" system solution for all door components. ... or the door interface with integration authorization management system, ... systems. The minimal dimensions of the access control and ... building installations offer considerable freedom of design with regard ...
(Date:4/15/2016)... 15, 2016 Research and ... Biometrics Market 2016-2020,"  report to their offering.  , ... , ,The global gait biometrics market is expected ... the period 2016-2020. Gait analysis generates ... be used to compute factors that are not ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... BEACH, Calif. , June 23, 2016  Blueprint ... new biological discoveries to the medical community, has closed ... co-founder Matthew Nunez . "We have ... us with the capital we need to meet our ... will essentially provide us the runway to complete validation ...
(Date:6/23/2016)... June 23, 2016 On Wednesday, June ... 4,833.32, down 0.22%; the Dow Jones Industrial Average edged 0.27% ... at 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage on the ... Nektar Therapeutics (NASDAQ: NKTR ), Aralez Pharmaceuticals Inc. ... BIND ). Learn more about these stocks by ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... regulatory and technical consulting, provides a free webinar on Performing Quality ... 13, 2016 at 12pm CT at no charge. , Incomplete investigations are still ...
(Date:6/23/2016)... FRANCISCO , June 22, 2016  Amgen (NASDAQ: ... sponsorship of the QB3@953 life sciences incubator ... human health. The shared laboratory space at QB3@953 was ... overcome a key obstacle for many early stage organizations ... part of the sponsorship, Amgen launched two "Amgen Golden ...
Breaking Biology Technology: