Navigation Links
Stopping MRSA before it becomes dangerous is possible, Sandia/UNM researchers find
Date:12/3/2009

ALBUQUERQUE, N.M. Most scientists believe that staph infections are caused by many bacterial cells that signal each other to emit toxins. The signaling process is called quorum sensing because many bacteria must be present to start the process.

But the Jeff Brinker research group has determined that the very first stage of staph infection, when bacteria switch from a harmless to a virulent form, occurs in a single cell and that this individual process can be stopped by the application of a simple protein.

The Brinker group's nonantibiotic approach may make it easier to treat staphylococci strains that have become drug resistant like the methicillin-resistant Staphylococcus aureus MRSA. The control of such strains is a formidable problem in hospitals.

"The good news is that by inhibiting the single cell's signaling molecules with a small protein, we were able to suppress any genetic reprogramming into the bacterium's more virulent form," said Brinker. "Our work clearly showed the strategy worked."

Brinker, with appointments at Sandia National Laboratories and the University of New Mexico, wrote about his group's findings in the Nov. 22 issue of Nature Chemical Biology.

In the course of its experiments, the Brinker team achieved three firsts:

They isolated Staphylococcus aureus bacteria in individual, self-assembled nanoscale compartments. Isolation of an individual bacterium previously had been achieved only computationally, leaving open questions of how a physically and chemically isolated bacterium would actually behave. They demonstrated that it was the release of signaling peptides from a single cell not a quorum that acted as a trigger to reprogram that same cell so that it released toxins. By introducing an inexpensive, very low-density lipoprotein (VLDL) to bind to the messenger peptide, they stopped the single cell from reprogramming itself. The term "quorum sensing" itself may prove a misnomer, the result of observations made in cell cultures rather than in the body, said Brinker. Because signaling molecules tend to diffuse away, a liquid culture of cells would naturally require many bacteria to produce enough signaling bacteria to begin reprogramming. The situation is otherwise in nature, where even a single cell may be sufficiently isolated that its own manufactured peptides would remain in its vicinity.

"Also, it's hard to believe that one cell's evolution could be based on what a whole bunch of cells do," said Brinker. "When we instead consider that an individual cell will do what's best for it, we can more clearly understand the benefits of that cell's behavior."

A bacterium may live longer by reprogramming itself to produce toxins or enzymes that allow it to access external nutrients, the Brinker group showed.

One aspect of experimental rigor was the team's ability to organize living cells into a nanostructured matrix. "We've already done this with yeast," said Brinker. "We just extended the process to bacteria."

A key question was whether a cell could distinguish between peptides emitted by itself from those sent by other cells. If signaling peptides were chemically the same, what would it matter which bacterium emitted it?

As it turned out, said Brinker, "Peptides could bond to surface receptors on their own [generating] cell. So a single cell's peptide molecules could activate its own genes to express proteins that make staph virulent."

Indicating that the experiment had isolated the actual cause of the transformation, when the number of peptides produced by a cell ultimately came to exceed the number of lippoprotein molecules in solution, a stalled "quorum-sensing" procedure started up again.

When still more signaling molecules were added to the mix, the cell's transformation occurred more rapidly.

Researchers hope to find a mechanism to locate bacteria reprogramming in the body so that the antidote can be delivered in time. The problem could be solved, suggested Brinker, by the insertion of VLDL-bearing nanospheres (another Brinker-group creation) into the bloodstream, linked to a 'searcher' molecule designed to find and link to suspect peptides or cells that produce them.

"Inhibiting this specific signaling molecule from turning on virulence wouldn't inhibit other bacteria," Brinker said.

Targeting is important because the human gastro-intestinal system contains many useful bacteria. These are often decimated by conventional antibiotics but would be spared by the Brinker group's method.


'/>"/>

Contact: Neal Singer
nsinger@sandia.gov
505-845-7078
DOE/Sandia National Laboratories
Source:Eurekalert  

Related biology news :

1. Steps toward Stopping Autoimmune Disease
2. Stopping unwanted cell death: Implications for drug discovery
3. Francisella tularensis: Stopping a biological weapon
4. Stopping autoimmunity before it strikes
5. Brain cell growth diminishes long before old age strikes, animal study shows
6. New brain cells listen before they talk
7. Laser can spot illness before symptoms appear
8. Breast cancer cells have to learn to walk before they can run
9. Generalist bacteria discovered in coastal waters may be more flexible than known before
10. ASU researcher may have discovered key to life before its origin on Earth
11. Deadly genetic disease prevented before birth in zebrafish
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Stopping MRSA before it becomes dangerous is possible, Sandia/UNM researchers find
(Date:1/20/2016)... Jan. 20, 2016 A market that just ... benefit from the explosion in genomics knowledge. Learn all ... Research. A range of dynamic trends are pushing market ... personalized medicine - pharmacogenomics - pathogen evolution - next ... markets - greater understanding of the role of genetic ...
(Date:1/18/2016)... JOSE, Calif. , Jan. 18, 2016 /PRNewswire/ ... security software that simplifies the use and access ... technology and go-to-market partnership with American Cyber.  ... Cyber brings extensive experience leading transformational C4ISR and ... implementing and integrating the latest proven technology solutions," ...
(Date:1/13/2016)... , January 13, 2016 ... the addition of the  "India Biometrics ... & Forecast (2015-2020)"  report to ... ) has announced the addition of ... Market - Estimation & Forecast (2015-2020)" ...
Breaking Biology News(10 mins):
(Date:2/4/2016)... SHENZHEN, China , Feb. 4, 2016 ... government, and various medical institutions attended a ceremony in ... provide integrative, personalized cell therapy in 2016. ... the "Shenzhen Clinical Translation Platform for Personalized Cell Therapy" ... Shenzhen Regional Cell Production Center, both subsidiaries of Beike ...
(Date:2/4/2016)... BETHESDA, Md. , Feb. 4, 2016  Spherix ... committed to the fostering and monetization of intellectual property, ... VTech and Uniden in the Northern District of ... are moving forward.  Inter Partes ... the U.S. Patent Office.  The IPR was initiated on ...
(Date:2/3/2016)...   ViaCyte, Inc ., a leading, privately-held ... cell-derived islet replacement therapy for the treatment of ... that ViaCyte and Janssen Biotech, Inc., one of ... have agreed to consolidate the assets of the ... ViaCyte with an exclusive license to all BetaLogics ...
(Date:2/3/2016)... , Feb. 3, 2016 New ... more than $1 million for researchers in ... on health-related research that demonstrates exciting potential.   ... of funding for the New Jersey Health Foundation Research ... members at these educational institutions— Princeton University, Rutgers ...
Breaking Biology Technology: