Navigation Links
Stickleback genomes shining bright light on evolution
Date:2/25/2010

Twenty billion pieces of DNA in 100 small fish have opened the eyes of biologists studying evolution. After combining new technologies, researchers now know many of the genomic regions that allowed an ocean-dwelling fish to adapt to fresh water in several independently evolved populations.

The discovery -- made possible in a project funded by the National Science Foundation and National Institutes of Health -- involved threespine stickleback fish taken from three land-locked freshwater Alaskan lakes and two ocean populations. The work appears in the Feb. 26 issue of PLoS Genetics, an open-access online publication of the Public Library of Science.

A six-member UO team across two separate labs combined Illumina massively parallel sequencing with a specialized technology that they developed. They then compared the genomes of 20 fish each from Alaska's Bear Paw, Boot and Mud lakes, and 20 each from saltwater populations in Rabbit Slough and Resurrection Bay.

All sites are located along Alaska's south-central coast. Researchers found that all of the fish were closely related in most of their genomes, but with differences in very specific regions. Each fish contains 500 million base pairs of DNA. Researchers were surprised to find that across the independently derived populations very similar regions were identified, indicating that the same genes may be evolving when stickleback adaptation is repeated in different lakes. Researchers now are focusing efforts to understand which specific genes are involved in such adaptation.

The approach taken in the study, said William A. Cresko, professor of biology and member of the UO's Center for Ecology and Evolutionary Biology, could be applied to other organisms. "It would be fascinating to determine whether similar results would be found in studies of ocean-dwelling sockeye salmon and their freshwater counterparts the Kokanee, for example," he said. The findings, presented at professional conferences, he added, already are fueling research efforts in a variety of other organisms around the world.

Sticklebacks are a small silver-colored fish, barely two inches in length; they are found throughout the Northern Hemisphere in both oceans and freshwater.

"Populations of freshwater stickleback arise when new habitats open up and are colonized," Cresko said. "Alaska has a lot of lakes that have been around only about 10,000 years, formed after glaciers receded. Instead of dying out when they were cut off from saltwater, they evolved very rapidly and in a lot of ways, such as in their bones and armor, the shapes of their jaws, as well as coloration and behavior. When one population no longer recognizes and won't mate with another population, they effectively become a new species, so some of the regions we are identifying may be important for speciation, too."

Sticklebacks have long been a focus for behavioral biologists because of their complex courtship rituals. Only recently have they come under genetic and genomic scrutiny, and the UO has been at the forefront of such studies. Until recently, efforts focused on small numbers of traits, tracking just a few genes at a time. In a 2006 talk on campus, Cresko outlined the challenges of the research, saying that faster, cheaper DNA-analyzing tools were needed to scan entire genomes. In the audience was Eric Johnson of the UO's Institute of Molecular Biology.

For the next three years, Cresko and Johnson worked to develop a technique they called Restriction-site Associated DNA -- the development of which helped spawned Floragenex, a UO technology spinoff company -- and subsequently combined it with a genomic revolution called Next Generation Sequencing using a genome-analyzer tool known as Illumina's GA2 sequencer.

"We combined two technologies to develop sequence RAD (restricted-site associated DNA) tags," Cresko said. "With this, we can quickly look across entire genomes and ask new questions: Can we find genomic regions that were altered due to natural selection? And then compare this with a completely evolved population? How many regions are the same, how many are different?"

Previous research using RAD markers had focused on finding differences between samples grown in labs, Johnson said, "but many interesting biological questions can't be assayed in a lab, and many species of animals cannot be reared in a lab."

"Bill's lab showed that RAD markers can detect differences between natural populations, and his lab developed new analytical tools to understand the data," Johnson said. "It is a great fit for RAD markers, because they sample a genome at a higher density than other marker systems and provide DNA sequence data at a low error rate -- two crucial aspects for this kind of study."

Once the technology was ready, it took Cresko's team about six months to run the DNA analyses. Now that the technique is operating smoothly, the same experiments might be done in several weeks, he said.

Under a new NSF-funded project under the American Recovery and Reinvestment Act, Cresko and Frank von Hippel, a University of Alaska biologist, are looking closely at another set of stickleback populations. They are working on lakes formed when the 1964 Alaska earthquake lifted several offshore islands 10 meters (32.8 feet) in four minutes. "We hope to learn something about these fish while they are still evolving, literally, from an ocean population to a freshwater one," Cresko said.


'/>"/>

Contact: Jim Barlow
jebarlow@uoregon.edu
541-346-3481
University of Oregon
Source:Eurekalert  

Related biology news :

1. Researchers document rapid, dramatic reverse evolution in the threespine stickleback fish
2. Parasitic wasps newly sequenced genomes reveal new avenues for pest control
3. Genomes of identical twins reveal epigenetic changes that may play role in lupus
4. Singapore scientists join international study of 10,000 vertebrates genomes
5. Genomes of 2 popular research strains of E. coli sequenced
6. Genomes reveal bacterial lifestyles: Research
7. After dinosaurs, mammals rise but their genomes get smaller
8. New computational technique allows comparison of whole genomes as easily as whole books
9. Cold Spring Harbor Protocols features methods for analyzing genomes and plant cells
10. Cold Spring Harbor Protocols features methods to screen genomes and analyze evolution
11. Latest Integrated Microbial Genomes data management system update release
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Stickleback genomes shining bright light on evolution
(Date:6/22/2016)... , June 22, 2016  The American College of Medical ... Show Executive Magazine as one of the fastest-growing trade ... 25-27 at the Bellagio in Las Vegas ... highest percentage of growth in each of the following categories: ... companies and number of attendees. The 2015 ACMG Annual Meeting ...
(Date:6/21/2016)... 21, 2016 NuData Security announced today that ... of principal product architect and that Jon ... customer development. Both will report directly to ... moves reflect NuData,s strategic growth in its product ... customer demand and customer focus values. ...
(Date:6/15/2016)... York , June 15, 2016 ... new market report titled "Gesture Recognition Market by Application ... Forecast, 2016 - 2024". According to the report, the  ... 11.60 billion in 2015 and is estimated to ... USD 48.56 billion by 2024.  Increasing ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... -- A person commits a crime, and the detective uses ... criminal down. An outbreak of foodborne illness makes ... uses DNA evidence to track down the bacteria that caused ... not. The FDA has increasingly used a complex, cutting-edge technology ... Put as simply as possible, whole genome sequencing is a ...
(Date:6/23/2016)... SAN FRANCISCO , June 23, 2016   ... it has secured $1 million in debt financing from ... to ramp up automation and to advance its drug ... for its new facility. "SVB has been ... goes beyond the services a traditional bank would provide," ...
(Date:6/23/2016)... NEWPORT BEACH, Calif. , June 23, 2016 /PRNewswire/ ... offering new biological discoveries to the medical community, has ... and co-founder Matthew Nunez . "We ... provide us with the capital we need to meet ... funding will essentially provide us the runway to complete ...
(Date:6/23/2016)... ... 2016 , ... Velocity Products, a division of Morris Group, ... exclusively for Okuma CNC machining centers at The International Manufacturing Technology Show, IMTS, ... companies with expertise in toolholding, cutting tools, machining dynamics and distribution, Velocity SMART ...
Breaking Biology Technology: