Navigation Links
Stem cells: In search of a master controller
Date:5/6/2010

HOUSTON -- (May 6, 2010) -- With thousands of scientists across the globe searching for ways to use adult stem cells to fight disease, there's a growing emphasis on finding the "master regulators" that guide the differentiation of stem cells. New research from Rice University and the University of Cambridge suggests that a closely connected trio of regulatory proteins fulfills that role in hematopoietic stem cells (HSCs), the self-renewing cells the body uses to make new blood cells.

The results appear today in the online journal PLoS Computational Biology. Working with experimentalists at Cambridge, Rice bioengineers Oleg Igoshin and Jatin Narula created a computer model that accurately describes the observed behavior of the three regulatory proteins that are collectively known as the "Scl-Gata2-Fli1 triad."

"We don't yet have the experimental verification that this is the master-level regulator for HSCs, but based on our model, we can say that it has all the properties that we would expect to find in a master-level regulator," said Igoshin, an assistant professor in bioengineering at Rice.

All plants and animals have stem cells, a constantly replenished feedstock of unspecialized progenitor cells that have the ability to become any of several specialized types of cell. An HSC is a type of adult stem cell that forms new blood cells. In a healthy human adult, HSCs are used to form about 100 billion new white and red blood cells each day.

But HSCs also need to be able to self-renew, or make the additional stem cells needed to replenish the body's supply. Self-renewal becomes particularly important after significant blood loss through injury or when patients receive bone marrow transplants.

Igoshin and Narula, a graduate student, worked with experimentalists Aileen Smith and Berthold Gottgens at the Cambridge Institute for Medical Research to create a mathematical model that accurately describes the complex interplay among the three HSC regulatory proteins in the Scl-Gata2-Fli1 triad. Based on previous studies at Cambridge, it was obvious that the triad plays an essential role in HSC development. In creating their computer model, Igoshin and Narula were able to quantify the way the three interact and thus shed light on their combined role in regulating HSCs.

To qualify as a master regulator, the triad needed to meet two criteria. It had to act as a "bistable" switch, a one-way button that toggled from the "replenish HSC" state to the "differentiate" state. Second, it needed to ignore extraneous signals and throw the switch only when a signal persisted.

"In examining the results from the model, we found the triad did have the characteristics of a master regulator," Narula said. "The first time it's switched on, all the cells stay on. It also handles deactivation in a controlled manner, so that some cells differentiate and get deactivated and others don't. Finally, it has the ability to discern whether or not the level of signal is present only for a short burst or for a significantly long time."

Igoshin said additional experimental research is needed to verify the computer model's prediction that the Scl-Gata2-Fli1 triad is the master-level controller for HSCs. However, he said the prediction is particularly intriguing in light of previous studies that suggest other similarly wired regulatory triads are key players in other types of stem cells, including embryonic stem cells.

"It's possible that this triad motif is reused elsewhere," Igoshin said. "The proteins could be different in each case, but the motif structure of their interconnections is common and may be repeated elsewhere in nature. That's one of the most intriguing aspects of this research."


'/>"/>

Contact: Jade Boyd
jadeboyd@rice.edu
713-348-6778
Rice University
Source:Eurekalert  

Related biology news :

1. Type 1 diabetes triggered by lazy regulatory T-cells: McGill researchers
2. From sheet metal elements to host cells: DFG launches 10 new collaborative research centers
3. HIV-1 protease inhibitor induced oxidative stress in pancreatic B-cells: thymoquinone protection
4. Induced neural stem cells: Not quite ready for prime time
5. Research shows skeleton to be endocrine organ
6. Newly created cancer stem cells could aid breast cancer research
7. Dominant cholesterol-metabolism ideas challenged by new research
8. Researchers identify proteins involved in new neurodegenerative syndrome
9. Texas researchers and educators head for Antarctica
10. MGH researchers describe new way to identify, evolve novel enzymes
11. University of Pennsylvania researchers develop formula to gauge risk of disease clusters
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Stem cells: In search of a master controller
(Date:11/28/2016)... 2016 "The biometric system ... The biometric system market is in the growth ... near future. The biometric system market is expected to ... a CAGR of 16.79% between 2016 and 2022. Government ... technology in smartphones, rising use of biometric technology in ...
(Date:11/19/2016)... Securus Technologies, a leading provider of civil and criminal ... monitoring, announced today that it has offered a challenge ... technology judge determine who has the largest and best ... platform, and the best customer service. "ICSolutions ... we do – which clearly is not the case ...
(Date:11/15/2016)... -- Research and Markets has announced the addition of ... to their offering. ... The global bioinformatics ... USD 6.21 Billion in 2016, growing at a CAGR of 21.1% ... market is driven by the growing demand for nucleic acid and ...
Breaking Biology News(10 mins):
(Date:12/8/2016)... Eurofins announces the appointment of Sean Murray , ... Inc. (ESI). Mr. Murray will bring valuable expertise ... experience in leading international business teams. As the National Division Leader, ... uphold Eurofins, status as the global leader in bio-analytical testing services. ... , , ...
(Date:12/8/2016)... ... December 08, 2016 , ... Opal Kelly, ... essential device-to-computer interconnect using USB or PCI Express, announced the FOMD-ACV-A4, the company's ... is a small, thin, SODIMM-style module that fits a standard 204-pin SODIMM socket ...
(Date:12/8/2016)... December 8, 2016 Oxford Gene ... customisable SureSeq™ NGS panel range with the launch of the ... cost-effective study of variants in familial hypercholesterolemia (FH). The panel ... detection on a single small panel and allows customisation by ... includes all exons for LDLR , P ...
(Date:12/8/2016)... ... 08, 2016 , ... KBioBox llc announced today the launch ... developed a sophisticated “3 click” gene dditing off target analysis program and a ... https://www.kbiobox.com/ and powered by the company’s proprietary BioEngine. Scientists, pharmaceutical ...
Breaking Biology Technology: