Navigation Links
Stem cell study could aid quest to combat range of diseases
Date:6/3/2013

Scientists have taken a vital step forward in understanding how cells from skin tissue can be reprogrammed to become stem cells.

New research could pave the way to generate these stem cells efficiently to better understand and develop treatments for diseases such as multiple sclerosis, Parkinson's disease and muscular degeneration.

The study of how these cells known as induced pluripotent stem cells (iPSCs) were reprogramed was led by the University of Edinburgh and is published in the journal Nature.

Scientists found that the process by which iPSCs are created is not simply a reversal of how skin cells are generated in normal human development.

Researchers made the discovery by tracking the change of skin cells during the reprogramming process.

All cells in the human body begin life as a mass of cells, with the capacity to change into any specialised cell, such as skin or muscle cell.

By returning adult cells to this original state and recreating the cell type needed for treatment scientists hope to find ways of tackling diseases such as MS, in which cells become faulty and need to be replaced.

Scientists have been able to create stem cells in this way since 2006 but, until now, it has not been clear how adult cells 'forget' their specialised roles to be reprogrammed by scientists.

Experts say that current methods of iPSCs production are time consuming and costly. It takes around four weeks to make human stem cells and even then the process does not always work.

Researchers say that their new insight will enable them to streamline the stem cell production process. The finding may also shed light on how to create different cell types like muscle or brain cells that can be used to improve our understanding of diseases and treatment.

Dr Keisuke Kaji, of the Medical Research Council Centre for Regenerative Medicine at the University of Edinburgh, said: "As exciting as this technology is, we still know very little about how cell reprogramming actually works. Using a new technique, we have improved our understanding of the process. Our work marks an exciting step towards ensuring that induced pluripotent stem cells technology will meet its full potential."


'/>"/>

Contact: Eleanor Cowie
eleanor.cowie@ed.ac.uk
44-131-650-6382
University of Edinburgh
Source:Eurekalert

Related biology news :

1. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
2. Law that regulates shark fishery is too liberal: UBC study
3. New study will help protect vulnerable birds from impacts of climate change
4. Study jointly led by UCSB researcher supports theory of extraterrestrial impact
5. BYU study: Using a gun in bear encounters doesnt make you safer
6. 15-year study: When it comes to creating wetlands, Mother Nature is in charge
7. Pycnogenol (French maritime pine bark extract) shown to improve menopause symptoms in new study
8. Crystal structure of archael chromatin clarified in new study
9. EU-funded study underlines importance of Congo Basin for global climate and biodiversity
10. University of Houston study shows BP oil spill hurt marshes, but recovery possible
11. Study demonstrates cells can acquire new functions through transcriptional regulatory network
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:12/20/2016)... RALEIGH, N.C. and GENEVA, Dec, 20, 2016 ... performance biometric data sensor technology, and STMicroelectronics ... across the spectrum of electronics applications, announced today ... scalable development kit for biometric wearables that includes ... integrated with Valencell,s Benchmark™ biometric sensor ...
(Date:12/16/2016)... , Dec 16, 2016 Research and ... System Market - Global Forecast to 2021" report to their ... The ... to grow at a CAGR of 14.06% from 2016 to 2021. ... and is projected to reach 854.8 Million by 2021. The growth ...
(Date:12/15/2016)... , Dec. 15, 2016   WaferGen Bio-systems, ... held genomics technology company, announced today that on December ... Qualifications Department of The Nasdaq Stock Market LLC which ... bid price of WaferGen,s common stock had been at ... WaferGen has regained compliance with Listing Rule 5550(a)(2) of ...
Breaking Biology News(10 mins):
(Date:1/11/2017)... ... January 11, 2017 , ... While the most acute effects ... becoming increasingly clear that the evolution and transmission dynamics of resistance gene dissemination ... study of clinical resistance, has vastly underestimated these reservoirs of resistance genes. ...
(Date:1/11/2017)... ... January 11, 2017 , ... For ... difference when navigating the challenges young businesses face. With the second installment of ... and experience of Geoff DiMasi, Founder and Principal of interactive design agency, P’unk ...
(Date:1/11/2017)... (PRWEB) , ... January 11, 2017 , ... ... business development professional has joined its team. Bernhard Bartylla will lead European initiatives ... working with Bernhard to introduce ACOMP and ARGEN to European manufacturers and researchers. ...
(Date:1/11/2017)... Md. , Jan. 11, 2017  GenVec, ... gene delivery company, announced today that its chief ... present a talk entitled  "AdenoVerse™ platform for translational ... the Biotech Showcase at the upcoming Phacilitate Cell ... Miami , Florida.  Dr. Brough,s presentation ...
Breaking Biology Technology: