Navigation Links
Stem cell research paves way for progress on dealing with Fragile X retardation
Date:5/22/2012

Jerusalem, May 22, 2012 Researchers at the Hebrew University of Jerusalem have achieved, for the first time, the generation of neuronal cells from stem cells of Fragile X patients. The discovery paves the way for research that will examine restoration of normal gene expression in Fragile X patients.

Fragile X syndrome is the most common cause of inherited mental retardation, affecting hundreds of thousands of patients worldwide. The syndrome is caused by lack of normal expression (functioning) of the FMR1 gene that is critical for normal cognitive function in brain neuronal cells.

Absence of expression of the FMR1 gene is caused by a mutation in the regulatory elements that govern its expression. The abnormal addition of chemical methyl groups to the regulatory elements causes gene silencing in patients, culminating in severe mental retardation.

A potential way to help patients is to find compounds that will clear the abnormal methyl groups from the regulatory elements and reactivate normal gene expression. In their work, the Hebrew University researchers have identified a chemical compound that restored normal gene expression specifically in neuronal cells, the cell type most affected in patients.

The research was conducted in the laboratory of Nissim Benvenisty, the Herbert Cohn Professor of Cancer Research at the Hebrew University, by PhD student Ori Bar-Nur and undergraduate student Inbal Caspi. They demonstrated, for the first time, the generation of brain neuronal cells from patients of Fragile X syndrome in a dish culture. In doing so, they were able to find a substance that restored normal gene expression in patients' cells.

In a previous study conducted in the Benvenisty laboratory, a novel technology was used to induce pluripotent stem cells from skin cells of Fragile X patients. Pluripotent stem cells have the amazing ability to differentiate into any human cell type in a dish culture.

In their latest study (published in the Journal of Molecular Cell Biology), the researchers harnessed this ability to turn the stem cells into neuronal brain cells. After generating the cells, they screened several chemical substances with the aim of finding one that would restore FMR1 normal gene expression. They showed that the substance 5-azaC was able to clear the methyl groups from the regulatory elements of the gene, allowing for the efficient restoration of FMR1 expression in both stem and neuronal brain cells.

The substance 5-azaC has been known for many years to clear methyl groups from regulatory elements of genes, and is also an already established drug for other diseases. However, this is the first time that it has been shown to successfully clear the methylation in neurons or stem cells of Fragile X patients.

In addition, the researchers were able to show that gene expression is maintained even after 5-azaC withdrawal, so there is no need to administer it continuously. This raises hopes for the use of the compound as a potential drug for the benefit of Fragile X patients.

According to Bar-Nur, "There is still a substantial gap between the restoration of gene expression in cultured patients' cells and restoring it in patients; however, the finding that it is possible to restore gene expression in neuronal cells paves the way for further study of its restoration in patients." He concludes: "New technologies developed in recent years in the stem cell field allow us to conduct research that was not possible until recently".


'/>"/>
Contact: Jerry Barach
jerryb@savion.huji.ac.il
972-258-82904
The Hebrew University of Jerusalem
Source:Eurekalert  

Related biology news :

1. Wistar Institute researcher receives New Innovator award from NIH
2. NC State researchers get to root of parasite genome
3. White Mountain Research Station to host climate change conference
4. Stevens awarded $1M for advanced biofuels research
5. Researchers find animal with ability to survive climate change
6. Researchers find an essential gene for forming ears of corn
7. Researchers note differences between people and animals on calorie restriction
8. Researcher working on destruction of chemical weapons
9. Researchers study acoustic communication in deep-sea fish
10. Researchers discover that growing up too fast may mean dying young in honey bees
11. The Rett Syndrome Research Trust launches operations
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Stem cell research paves way for progress on dealing with Fragile X retardation
(Date:5/23/2017)... 23, 2017  Hunova, the first robotic gym for the rehabilitation and ... launched in Genoa, Italy . The first 30 robots ... the USA . The technology was developed and patented ... the IIT spin-off Movendo Technology thanks to a 10 million euro investment ... please click: ...
(Date:4/19/2017)... 19, 2017 The global military ... is marked by the presence of several large global ... by five major players - 3M Cogent, NEC Corporation, ... for nearly 61% of the global military biometric market ... the global military biometrics market boast global presence, which ...
(Date:4/11/2017)... Fla. , April 11, 2017 ... and secure authentication solutions, today announced that it ... Intelligence Advanced Research Projects Activity (IARPA) to develop ... Thor program. "Innovation has been a ... IARPA,s Thor program will allow us to innovate ...
Breaking Biology News(10 mins):
(Date:7/20/2017)... ... July 20, 2017 , ... Resoundant, ... radiology and imaging centers around the U.S. that offer MR Elastography for liver ... to needle biopsy for staging liver fibrosis assessment. , “MRE:connect was created ...
(Date:7/20/2017)... Concord, Massachusetts (PRWEB) , ... July 20, 2017 ... ... hosting a multi-part seminar on digital pathology and artificial intelligence Tuesday, July 25, ... features Dr. Alexander Baras from Johns Hopkins Medicine. , Baras, Associate Director ...
(Date:7/18/2017)... ... July 18, 2017 , ... Nanomedical ... biotherapeutics development, announces the launch of a new NTA biosensor chip for use ... to study the kinetics of polyhistidine-tagged (His-tagged) molecules quickly and reliably. , ...
(Date:7/18/2017)... ... July 18, 2017 , ... Blood centers traditionally see a dangerous drop ... summer is a struggle for community blood centers as high schools are out and ... of Commerce is teaming up with the South Texas Blood & Tissue ...
Breaking Biology Technology: