Navigation Links
Stem-cell approach shows promise for Duchenne muscular dystrophy
Date:1/14/2013

CHAMPAIGN, Ill. Researchers have shown that transplanting stem cells derived from normal mouse blood vessels into the hearts of mice that model the pathology associated with Duchenne muscular dystrophy (DMD) prevents the decrease in heart function associated with DMD.

Their findings appear in the journal Stem Cells Translational Medicine.

Duchenne muscular dystrophy is a genetic disorder caused by a mutation in the gene for dystrophin, a protein that anchors muscle cells in place when they contract. Without dystrophin, muscle contractions tear cell membranes, leading to cell death. The lost muscle cells must be regenerated, but in time, scar tissue replaces the muscle cells, causing the muscle weakness and heart problems typical of DMD.

The U.S. Centers for Disease Control and Prevention estimates that DMD affects one in every 3,500 males. The disease is more prevalent in males because the dystrophin mutation occurs on the X chromosome; males have one X and one Y chromosome, so a male with this mutation will have DMD, while females have two X chromosomes and must have the mutation on both of them to have the disease. Females with the mutation in one X chromosome sometimes develop muscle weakness and heart problems as well, and may pass the mutation on to their children.

Although medical advances have extended the lifespans of DMD patients from their teens or 20s into their early 30s, disease-related damage to the heart and diaphragm still limits their lifespan.

"Almost 100 percent of patients develop dilated cardiomyopathy," in which a weakened heart with enlarged chambers prevents blood from being properly pumped throughout the body, said University of Illinois comparative biosciences professor Suzanne Berry-Miller, who led the study. "Right now, doctors are treating the symptoms of this heart problem by giving patients drugs to try to prolong heart function, but that can't replace the lost or damaged cells," she said.

In the new study, the researchers injected stem cells known as aorta-derived mesoangioblasts (ADM) into the hearts of dystrophin-deficient mice that serve as a model for human DMD. The ADM stem cells have a working copy of the dystrophin gene.

This stem cell therapy prevented or delayed heart problems in mice that did not already show signs of the functional or structural defects typical of Duchenne muscular dystrophy, the researchers report.

Berry-Miller and her colleagues do not yet know why the functional benefits occur, but proposed three potential mechanisms. They observed that some of the injected stem cells became new heart muscle cells that expressed the lacking dystrophin protein. The treatment also caused existing stem cells in the heart to divide and become new heart muscle cells, and the stem cells stimulated new blood vessel formation in the heart. It is not yet clear which of these effects is responsible for delaying the onset of cardiomyopathy, Berry-Miller said.

"These vessel-derived cells might be good candidates for therapy, but the more important thing is the results give us new potential therapeutic targets to study, which may be activated directly without the use of cells that are injected into the patient, such as the ADM in the current study," Berry-Miller said. "Activating stem cells that are already present in the body to repair tissue would avoid the potential requirement to find a match between donors and recipients and potential rejection of the stem cells by the patients."

Despite the encouraging results that show that stem cells yield a functional benefit when administered before pathology arises in DMD mouse hearts, a decline in function was seen in mice that already showed the characteristics of dilated cardiomyopathy. One of these characteristics is the replacement of muscle tissue with connective tissue, known as fibrosis.

This difference may occur, Berry-Miller said, as a result of stem cells landing in a pocket of fibrosis rather than in muscle tissue. The stem cells may then become fibroblasts that generate more connective tissue, increasing the amount of scarring and making heart function worse. This shows that the timing of stem cell insertion plays a crucial role in an increase in heart function in mice lacking the dystrophin protein.

She remains optimistic that these results provide a stepping-stone toward new clinical targets for human DMD patients.

"This is the only study so far where a functional benefit has been observed from stem cells in the dystrophin-deficient heart, or where endogenous stem cells in the heart have been observed to produce new muscle cells that replace those lost in DMD, so I think it opens up a new area to focus on in pre-clinical studies for DMD," Berry-Miller said.


'/>"/>
Contact: Diana Yates
diya@illinois.edu
217-333-5802
University of Illinois at Urbana-Champaign
Source:Eurekalert  

Related biology news :

1. Stanford scientists develop gene therapy approach to grow blood vessels in ischemic limbs
2. A project to research biological and chemical aspects of microalgae to fuel approach
3. UofL research holds promise of therapeutic approach for gum disease
4. Approach to diabetes self-management too narrow, study suggests
5. Manatee hearing good enough to sense approaching motorboats
6. Scripps Florida scientist awarded $1.5 million to design therapeutics with new RNA approach
7. New approach to spell checking gene sequences
8. Powerful new approach to attack flu virus
9. Potential new approach to regenerating skeletal muscle tissue
10. Bugs have key role in farming approach to storing CO2 emissions
11. Computing advances vital to sustainability efforts; new report recommends problem-focused, iterative approach to research
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Stem-cell approach shows promise for Duchenne muscular dystrophy
(Date:6/22/2016)... , June 22, 2016 On Monday, ... call to industry to share solutions for the Biometric ... U.S. Customs and Border Protection (CBP), explains that CBP ... are departing the United States , ... and to defeat imposters. Logo - ...
(Date:6/9/2016)... ISTANBUL , June 9, 2016  Perkotek an innovation leader in attendance control ... to seamlessly log work hours, for employers to make sure the right employees are ... Logo - http://photos.prnewswire.com/prnh/20160609/377486LOGO ... ... ...
(Date:6/2/2016)... 2, 2016   The Weather Company , an IBM ... an industry-first capability in which consumers will be able to ... ask questions via voice or text and receive relevant information ... Marketers have long sought an advertising solution that ... be personal, relevant and valuable; and can scale across millions ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... Ginkgo Bioworks , a leading organism design company ... as one of the World Economic Forum,s Technology ... companies. Ginkgo Bioworks is engineering biology to manufacture ... the nutrition, health and consumer goods sectors. The ... Fortune 500 companies to design microbes for their ...
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers and fluorometers ... the 6000i models are higher end machines that use the more unconventional z-dimension of ... beam from the bottom of the cuvette holder. , FireflySci has developed several ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... announce the launch of their brand, UP4™ Probiotics, into Target stores nationwide. The ... is proud to add Target to its list of well-respected retailers. This list ...
(Date:6/23/2016)... , June 23, 2016 A person commits a ... crime scene to track the criminal down. An ... Food and Drug Administration (FDA) uses DNA evidence to track ... Sound far-fetched? It,s not. The FDA has increasingly ... support investigations of foodborne illnesses. Put as simply as possible, ...
Breaking Biology Technology: