Navigation Links
Steam process could remove CO2 to regenerate amine capture materials
Date:7/14/2010

Because they can remove carbon dioxide from the flue gases of coal-burning facilities such as power plants, solid materials containing amines are being extensively studied as part of potential CO2 sequestration programs designed to reduce the impact of the greenhouse gas.

But although these adsorbent materials do a good job of trapping the carbon dioxide, commonly-used techniques for separating the CO2 from the amine materials thereby regenerating them for re-use seem unlikely to be suitable for high-volume industrial applications.

Now, researchers have demonstrated a relatively simple regeneration technique that could utilize waste steam generated by many facilities that burn fossil fuels. This steam-stripping technique could produce concentrated carbon dioxide ready for sequestration in the ocean or deep-earth locations while readying the amine materials for further use.

"We have demonstrated an approach to developing a practical adsorption process for capturing carbon dioxide and then releasing it in a form suitable for sequestration," said Christopher Jones, a professor in the School of Chemical & Biomolecular Engineering at the Georgia Institute of Technology.

The research was reported online June 23, 2010 in the early view version of the journal ChemSusChem. The work was supported by New York-based Global Thermostat, LLC., a company that is developing and commercializing technology for the direct capture of carbon dioxide from the air.

Amine sorbents are often regenerated through a process that involves a change in temperature to supply the energy required to break the amine-carbon dioxide chemical bonds.

For convenience, researchers commonly remove the CO2 by heating the amine material in the presence of a flowing gas such as nitrogen or helium. That removes the carbon dioxide, but mixes it with the flowing gas regenerating the material, but leaving the CO2 mixed with nitrogen or helium.

Another approach is to heat the material in a carbon dioxide stream, but that is less efficient and can lead to fouling of the amine.

Jones and his team from Georgia Tech, SRI International and Global Thermostat took a different approach, heating the sorbent amine in steam at a temperature of approximately 105 degrees Celsius, causing the carbon dioxide to separate from the material. The steam can then be compressed, condensing the water and leaving a concentrated flow of carbon dioxide suitable for sequestration or other use such as a nutrient for algae growth.

Because most coal-burning facilities generate steam, some of that might be bled off to achieve the separation and regeneration without a significant energy penalty. "In many facilities, steam at this temperature would have no other application, so using it for this purpose would not have a significant cost to the plant," Jones noted.

The researchers studied three common formulations of the amine material: Class 1 adsorbents based on porous supports impregnated with monomeric or polymeric amines, Class 2 adsorbents that are covalently linked to a solid support, and Class 3 adsorbents based on porous supports upon which aminopolymers are polymerized in-situ, starting from an amine-containing monomer.

The adsorbents were studied through three cycles of carbon dioxide adsorption and steam-stripping. The researchers found differences in how each material was affected by the steam-stripping; performance of the most stable material actually improved, while the least stable material suffered a 13 percent efficiency decline.

"Steam-stripping is widely used in other separation processes, but has never been reported for use with supported amine materials, perhaps due to concerns about sorbent stability," Jones said. "We reported three uses of the materials in the paper and have only tested them through five or six uses, but we expect the materials could be used many more times. To be practical, the amine-containing materials need to be useful through thousands of cycles."

Pilot-scale carbon dioxide separation facilities are already in operation using amines dissolved in water. Because of the energy required to regenerate the liquid solutions, many researchers have been examining solid amines but the work so far has focused mostly on improving the efficiency of the materials, he added.

Though much remains to be done before solid amine materials can be used in large-scale applications, Jones believes the study demonstrates that improved materials can be developed with properties tailored for the steam regeneration process.

"We believe there is potential for development of materials that will be stable for long-term use during regeneration using this technique," he said. "This study lays the groundwork for an array of future studies that will lead to an understanding of the structural changes induced by steam-stripping."


'/>"/>

Contact: John Toon
jtoon@gatech.edu
404-894-6986
Georgia Institute of Technology Research News
Source:Eurekalert  

Related biology news :

1. NJIT licensee invents industrial process for grinding cement and other cementitious materials
2. New biofuels processing method for mobile facilities
3. ISU researcher develops green, bio-based process for producing fuel additive
4. New process is promising for hydrogen fuel cell cars
5. Researchers identify a fundamental process in lysosomal function and protein degradation
6. Creating new healthy ingredients by innovative milling techniques and processes for cereal grains
7. Novel processing technologies developed for extending use of oats in gluten-free diet
8. Phosphorous in sodas and processed foods accelerates signs of aging say Harvard scientists
9. New drug design technique could dramatically speed discovery process
10. Faulty clean-up process may be key event in Huntingtons disease
11. Genome mapping technique speeds process of finding specific genes
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Steam process could remove CO2 to regenerate amine capture materials
(Date:5/16/2017)... May 16, 2017  Veratad Technologies, LLC ( www.veratad.com ... age and identity verification solutions, announced today they will ... 2017, May 15 thru May 17, 2017, in ... International Trade Center. Identity impacts the ... in today,s quickly evolving digital world, defining identity is ...
(Date:4/19/2017)... , April 19, 2017 ... its vendor landscape is marked by the presence of ... is however held by five major players - 3M ... these companies accounted for nearly 61% of the global ... leading companies in the global military biometrics market boast ...
(Date:4/13/2017)... 2017 According to a new market research report ... Identity Administration, and Authorization), Service, Authentication Type, Deployment Mode, Vertical, and Region ... expected to grow from USD 14.30 Billion in 2017 to USD 31.75 ... ... MarketsandMarkets Logo ...
Breaking Biology News(10 mins):
(Date:10/9/2017)... Phoenix, Arizona (PRWEB) , ... October 09, 2017 ... ... of Kindred, a four-tiered line of medical marijuana products targeting the needs of ... production and packaging of Kindred takes place in Phoenix, Arizona. , As operators ...
(Date:10/7/2017)... Arizona (PRWEB) , ... October ... ... 15 years’ experience providing advanced instruments and applications consulting for microscopy and ... in-house expertise in application consulting, Nanoscience Analytical offers a broad range of ...
(Date:10/7/2017)... Oct. 6, 2017  The 2017 Nobel Prize ... scientists, Jacques Dubochet, Joachim Frank and ... cryo-electron microscopy (cryo-EM) have helped to ... structural biology community. The winners worked with systems ... routinely produce highly resolved, three-dimensional images of protein ...
(Date:10/6/2017)... , ... October 06, 2017 , ... ... a lunch discussion and webinar on INSIGhT, the first-ever adaptive clinical trial for ... Dana-Farber Cancer Institute. The event is free and open to the public, but ...
Breaking Biology Technology: