Navigation Links
Staying ahead of Huntington's disease
Date:12/11/2013

Huntington's disease is a devastating, incurable disorder that results from the death of certain neurons in the brain. Its symptoms show as progressive changes in behavior and movements.

The neurodegenerative disease is caused by a defect in the huntingtin gene (Htt) that causes an abnormal expansion in a part of DNA, called a CAG codon or triplet that codes for the amino acid glutamine. A healthy version of the Htt gene has between 20 and 23 CAG triplets. The mutational expansion in Htt can lead to long repeats of the CAG triplet, resulting in the mutant protein having a long sequence of several glutamine residues called a polyglutamine tract. This CAG triplet expansion in unrelated genes is the root of at least nine neurodegenerative disorders, including Huntington's disease.

Rohit Pappu, PhD, professor of biomedical engineering at Washington University in St. Louis, and his colleagues in the School of Engineering & Applied Science and in the School of Medicine, are working to understand how expanded polyglutamine tracts form the types of supramolecular structures that are presumed to be toxic to neurons a feature that polyglutamine expansions share with proteins associated with Alzheimer's disease and Parkinson's disease.

In recent work, Pappu and his research team showed that the amino acid sequences on either side of the polyglutamine tract within Htt can act as natural gatekeepers because they control the fundamental ability of polyglutamine tracts to form structures that are implicated in cellular toxicity. The results were published in PNAS Early Edition Nov. 25.

"These are progressive onset disorders," Pappu says. "The longer the polyglutamine tract gets, the more severe the disease, and the symptoms worsen with age. Our results are exciting because it means that any success we have in mimicking the effects of naturally occurring gatekeepers would be a significant step forward. And mechanistic studies are important in this regard because they enable us to learn from nature's own strategies.

"Previous studies from other labs showed that the toxic effects of polyglutamine expansions are tempered by the sequence contexts of polyglutamine tracts in Htt, not just the lengths of the polyglutamine tracts", Pappu says.

He and his research team focused on understanding the effects of sequence stretches that lie on either side of the polyglutamine tract in Htt. The results show that the N-terminal stretch accelerates the formation of ordered structures that are presumed to be benign to cells, whereas the C-terminal stretch slows the overall transition into structures that are expected to create trouble for cells, suggesting that these naturally occurring sequences behave as gatekeepers.

"It appears that where polyglutamine stretches are of functional importance, nature has ensured that they are flanked by gatekeeping sequences," Pappu says.

Pappu and his team are now working to find way s to mimic the effects of the N- and C-terminal flanking sequences from Htt. His team is working closely with Marc Diamond, MD, the David Clayson Professor of Neurology at the School of Medicine, to understand how naturally occurring proteins interact with flanking sequences and see if they can coopt them to ameliorate the toxic functions in the polyglutamine expansions.


'/>"/>

Contact: Neil Schoenherr
nschoenherr@wustl.edu
314-935-5235
Washington University in St. Louis
Source:Eurekalert  

Related biology news :

1. The naked mole-rats secret to staying cancer free
2. Staying alive in the high and dry
3. From 503-million-year-old fungi to recent earthquakes: New Geology posted ahead of print
4. GEOLOGY starts 2013 with 25 new articles posted online ahead of print
5. GSA Bulletin starts 2013 with 13 new papers published online ahead of print
6. 7 new GSA Bulletin articles posted online ahead of print
7. Parkinsons disease stopped in animal model
8. Disease-carrying colonizers on the move: Predicting the spread of ticks across Canada
9. U of Alberta researcher steps closer to understand autoimmune diseases
10. Common North American frog identified as carrier of deadly amphibian disease
11. New insight into mechanisms behind autoimmune diseases suggests a potential therapy
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Staying ahead of Huntington's disease
(Date:5/23/2017)... May 23, 2017  Hunova, the first robotic gym for the rehabilitation ... officially launched in Genoa, Italy . The first 30 ... and the USA . The technology was developed and ... by the IIT spin-off Movendo Technology thanks to a 10 million euro ... Release, please click: ...
(Date:4/19/2017)... ALBANY, New York , April 19, 2017 /PRNewswire/ ... highly competitive, as its vendor landscape is marked by ... in the market is however held by five major ... and Safran. Together these companies accounted for nearly 61% ... majority of the leading companies in the global military ...
(Date:4/11/2017)... , April 11, 2017 Crossmatch®, a ... authentication solutions, today announced that it has been ... Research Projects Activity (IARPA) to develop next-generation Presentation ... "Innovation has been a driving force ... program will allow us to innovate and develop ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... Personal eye wash is a basic first aid supply for any ... So which eye do you rinse first if a dangerous substance enters both eyes? It’s ... Wash with its unique dual eye piece. , “Whether its dirt and debris, or ...
(Date:10/11/2017)... 11, 2017  VMS BioMarketing, a leading provider of patient ... Clinical Nurse Educator (CNE) network, which will launch this week. ... among health care professionals to enhance the patient care experience ... and other health care professionals to help women who have ... ...
(Date:10/11/2017)... ... October 11, 2017 , ... A new study published in ... and fresh in vitro fertilization (IVF) transfer cycles. The multi-center matched ... , After comparing the results from the fresh and frozen transfer cohorts, the ...
(Date:10/10/2017)... Angeles, CA (PRWEB) , ... ... ... Inc., a development-stage cancer-focused pharmaceutical company advancing targeted antibody-drug conjugate (ADC) therapeutics, ... uses of targeted HPLN (Hybrid Polymerized Liposomal Nanoparticle), a technology developed in ...
Breaking Biology Technology: