Navigation Links
Staying ahead of Huntington's disease

Huntington's disease is a devastating, incurable disorder that results from the death of certain neurons in the brain. Its symptoms show as progressive changes in behavior and movements.

The neurodegenerative disease is caused by a defect in the huntingtin gene (Htt) that causes an abnormal expansion in a part of DNA, called a CAG codon or triplet that codes for the amino acid glutamine. A healthy version of the Htt gene has between 20 and 23 CAG triplets. The mutational expansion in Htt can lead to long repeats of the CAG triplet, resulting in the mutant protein having a long sequence of several glutamine residues called a polyglutamine tract. This CAG triplet expansion in unrelated genes is the root of at least nine neurodegenerative disorders, including Huntington's disease.

Rohit Pappu, PhD, professor of biomedical engineering at Washington University in St. Louis, and his colleagues in the School of Engineering & Applied Science and in the School of Medicine, are working to understand how expanded polyglutamine tracts form the types of supramolecular structures that are presumed to be toxic to neurons a feature that polyglutamine expansions share with proteins associated with Alzheimer's disease and Parkinson's disease.

In recent work, Pappu and his research team showed that the amino acid sequences on either side of the polyglutamine tract within Htt can act as natural gatekeepers because they control the fundamental ability of polyglutamine tracts to form structures that are implicated in cellular toxicity. The results were published in PNAS Early Edition Nov. 25.

"These are progressive onset disorders," Pappu says. "The longer the polyglutamine tract gets, the more severe the disease, and the symptoms worsen with age. Our results are exciting because it means that any success we have in mimicking the effects of naturally occurring gatekeepers would be a significant step forward. And mechanistic studies are important in this regard because they enable us to learn from nature's own strategies.

"Previous studies from other labs showed that the toxic effects of polyglutamine expansions are tempered by the sequence contexts of polyglutamine tracts in Htt, not just the lengths of the polyglutamine tracts", Pappu says.

He and his research team focused on understanding the effects of sequence stretches that lie on either side of the polyglutamine tract in Htt. The results show that the N-terminal stretch accelerates the formation of ordered structures that are presumed to be benign to cells, whereas the C-terminal stretch slows the overall transition into structures that are expected to create trouble for cells, suggesting that these naturally occurring sequences behave as gatekeepers.

"It appears that where polyglutamine stretches are of functional importance, nature has ensured that they are flanked by gatekeeping sequences," Pappu says.

Pappu and his team are now working to find way s to mimic the effects of the N- and C-terminal flanking sequences from Htt. His team is working closely with Marc Diamond, MD, the David Clayson Professor of Neurology at the School of Medicine, to understand how naturally occurring proteins interact with flanking sequences and see if they can coopt them to ameliorate the toxic functions in the polyglutamine expansions.


Contact: Neil Schoenherr
Washington University in St. Louis

Related biology news :

1. The naked mole-rats secret to staying cancer free
2. Staying alive in the high and dry
3. From 503-million-year-old fungi to recent earthquakes: New Geology posted ahead of print
4. GEOLOGY starts 2013 with 25 new articles posted online ahead of print
5. GSA Bulletin starts 2013 with 13 new papers published online ahead of print
6. 7 new GSA Bulletin articles posted online ahead of print
7. Parkinsons disease stopped in animal model
8. Disease-carrying colonizers on the move: Predicting the spread of ticks across Canada
9. U of Alberta researcher steps closer to understand autoimmune diseases
10. Common North American frog identified as carrier of deadly amphibian disease
11. New insight into mechanisms behind autoimmune diseases suggests a potential therapy
Post Your Comments:
Related Image:
Staying ahead of Huntington's disease
(Date:11/12/2015)... 2015  A golden retriever that stayed healthy despite ... has provided a new lead for treating this muscle-wasting ... Institute of MIT and Harvard and the University of ... Cell, pinpoints a protective gene that ... effects. The Boston Children,s lab of Lou Kunkel ...
(Date:11/11/2015)... MedNet Solutions , an innovative SaaS-based eClinical technology company that ... announce that it will be a Sponsor of the ... held November 17-19 in Hamburg , Germany.  ... iMedNet , MedNet,s easy-to-use, proven and affordable eClinical ... able to deliver time and cost savings of up to ...
(Date:11/9/2015)... 09, 2015 ... the "Global Law Enforcement Biometrics Market ... --> ) has announced the ... Biometrics Market 2015-2019" report to their ... ( ) has announced the addition ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... FAR HILLS, N.J. (PRWEB) , ... November 24, 2015 , ... ... University, as the recipient of the 2016 USGA Green Section Award. Presented annually since ... of golf through his or her work with turfgrass. , Clarke, of ...
(Date:11/24/2015)... ... 2015 , ... International Society for Pharmaceutical Engineering (ISPE) closed ... events for pharmaceutical manufacturing: 2015 Annual Meeting. The conference took place in Philadelphia, ... number of attendees in more than a decade. , “The 2015 Annual ...
(Date:11/24/2015)... ... November 24, 2015 , ... The Academy of Model ... Group (SIG), MultiGP, also known as Multirotor Grand Prix, to represent the First–Person View ... years. Many AMA members have embraced this type of racing and several new model ...
(Date:11/24/2015)... FRANCISCO , Nov. 24, 2015  Twist ... announced that Emily Leproust, Ph.D., Twist Bioscience chief ... Jaffray Healthcare Conference on December 1, 2015 at ... Hotel in New York City. --> ... . Twist Bioscience is on Twitter. ...
Breaking Biology Technology: