Navigation Links
Stanford scientists develop a water splitter that runs on an ordinary AAA battery
Date:8/22/2014

In 2015, American consumers will finally be able to purchase fuel cell cars from Toyota and other manufacturers. Although touted as zero-emissions vehicles, most of the cars will run on hydrogen made from natural gas, a fossil fuel that contributes to global warming.

Now scientists at Stanford University have developed a low-cost, emissions-free device that uses an ordinary AAA battery to produce hydrogen by water electrolysis. The battery sends an electric current through two electrodes that split liquid water into hydrogen and oxygen gas. Unlike other water splitters that use precious-metal catalysts, the electrodes in the Stanford device are made of inexpensive and abundant nickel and iron.

"Using nickel and iron, which are cheap materials, we were able to make the electrocatalysts active enough to split water at room temperature with a single 1.5-volt battery," said Hongjie Dai, a professor of chemistry at Stanford. "This is the first time anyone has used non-precious metal catalysts to split water at a voltage that low. It's quite remarkable, because normally you need expensive metals, like platinum or iridium, to achieve that voltage."

In addition to producing hydrogen, the novel water splitter could be used to make chlorine gas and sodium hydroxide, another important industrial chemical, according to Dai. He and his colleagues describe the new device in a study published in the Aug. 22 issue of the journal Nature Communications.

The promise of hydrogen

Automakers have long considered the hydrogen fuel cell a promising alternative to the gasoline engine. Fuel cell technology is essentially water splitting in reverse. A fuel cell combines stored hydrogen gas with oxygen from the air to produce electricity, which powers the car. The only byproduct is water unlike gasoline combustion, which emits carbon dioxide, a greenhouse gas.

Earlier this year, Hyundai began leasing fuel cell vehicles in Southern California. Toyota and Honda will begin selling fuel cell cars in 2015. Most of these vehicles will run on fuel manufactured at large industrial plants that produce hydrogen by combining very hot steam and natural gas, an energy-intensive process that releases carbon dioxide as a byproduct.

Splitting water to make hydrogen requires no fossil fuels and emits no greenhouse gases. But scientists have yet to develop an affordable, active water splitter with catalysts capable of working at industrial scales.

"It's been a constant pursuit for decades to make low-cost electrocatalysts with high activity and long durability," Dai said. "When we found out that a nickel-based catalyst is as effective as platinum, it came as a complete surprise."

Saving energy and money

The discovery was made by Stanford graduate student Ming Gong, co-lead author of the study. "Ming discovered a nickel-metal/nickel-oxide structure that turns out to be more active than pure nickel metal or pure nickel oxide alone," Dai said. "This novel structure favors hydrogen electrocatalysis, but we still don't fully understand the science behind it."

The nickel/nickel-oxide catalyst significantly lowers the voltage required to split water, which could eventually save hydrogen producers billions of dollars in electricity costs, according to Gong. His next goal is to improve the durability of the device.

"The electrodes are fairly stable, but they do slowly decay over time," he said. "The current device would probably run for days, but weeks or months would be preferable. That goal is achievable based on my most recent results."

The researchers also plan to develop a water splitter than runs on electricity produced by solar energy.

"Hydrogen is an ideal fuel for powering vehicles, buildings and storing renewable energy on the grid," said Dai. "We're very glad that we were able to make a catalyst that's very active and low cost. This shows that through nanoscale engineering of materials we can really make a difference in how we make fuels and consume energy."

A video describing the experiment is available at: https://www.youtube.com/watch?v=Nh_0cRYebYU


'/>"/>

Contact: Mark Shwartz
mshwartz@stanford.edu
650-723-9296
Stanford University
Source:Eurekalert  

Related biology news :

1. Stanford professor finds that wildfires and other burns play bigger role in climate change
2. Stanford study shows how to power California with wind, water and sun
3. Stanford biologist warns of early stages of Earths 6th mass extinction event
4. Oil palm plantations threaten water quality, Stanford scientists say
5. Stanfords Precourt Institute partners with KQED on a new e-book series on energy
6. Net energy analysis should become a standard policy tool, Stanford scientists say
7. Stanford research shows importance of European farmers adapting to climate change
8. Stanford researchers rethink natural habitat for wildlife
9. Stanford biologists help solve fungal mysteries
10. Behind the scenes of the IPCC report, with Stanford scientists
11. Stanford professor maps by-catch as unintended consequence of global fisheries
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Stanford scientists develop a water splitter that runs on an ordinary AAA battery
(Date:4/5/2017)...  The Allen Institute for Cell Science today announces ... portal and dynamic digital window into the human cell. ... application of deep learning to create predictive models of ... a growing suite of powerful tools. The Allen Cell ... publicly available resources created and shared by the Allen ...
(Date:3/30/2017)...  On April 6-7, 2017, Sequencing.com will host the ... hackathon at Microsoft,s headquarters in Redmond, Washington ... developing health and wellness apps that provide a unique, ... is the first hackathon for personal genomics and ... in the genomics, tech and health industries are sending ...
(Date:3/27/2017)... , March 27, 2017  Catholic Health Services ... Management Systems Society (HIMSS) Analytics for achieving Stage ... Model sm . In addition, CHS previously earned ... hospitals using an electronic medical record (EMR). ... high level of EMR usage in an outpatient ...
Breaking Biology News(10 mins):
(Date:7/20/2017)... , ... July 20, 2017 , ... ... Fujimoto, Ph.D ., the Elihu Thomson Professor of Electrical Engineering and Computer Science ... Award winner. Presented annually, the award recognizes an individual who has made ...
(Date:7/20/2017)... (PRWEB) , ... July 20, 2017 , ... Dr. Asher ... the winning recipients of the 2017 IAC Awards at the 22nd World Congress on ... committee also named four faculty to receive the Distinguished Fellowship Awards. , Dr. Asher ...
(Date:7/20/2017)... ... 20, 2017 , ... VIC Technology Venture Development™ (VIC™), is pleased ... This addition continues to strengthen and diversify VIC’s board. , "We are excited ... is a highly accomplished business executive with a broad range of experience directly relevant ...
(Date:7/20/2017)... Minn., July 20, 2017   KCNQ2 Cure ... genetic evaluations company, today announced that they have ... a genetic mutation implicated in KCNQ2 epileptic encephalopathy. ... for a second case involving an additional KCNQ2 ... Cure Alliance and Pairnomix entered into a collaboration ...
Breaking Biology Technology: