Navigation Links
Stanford researchers help predict the oceans of the future with a mini-lab
Date:6/7/2012

Stanford Woods Institute for the Environment researchers have helped open a new door of possibility in the high-stakes effort to save the world's coral reefs.

Working with an international team, the scientists including Stanford Woods Institute Senior Fellows Jeff Koseff, Rob Dunbar and Steve Monismith found a way to create future ocean conditions in a small lab-in-a-box in Australia's Great Barrier Reef. The water inside the device can mimic the composition of the future ocean as climate change continues to alter Earth.

Inside the mini-lab, set in shallow water 2 to 6 feet deep, elevated levels of water acidity were created to test the reaction of a few local corals. (Other corals in the vicinity were not adversely affected.)

It was the first controlled ocean acidification experiment in shallow coastal waters. The scientists' study, published in Scientific Reports, describes how they simulated predicted future ocean conditions off Heron Island in Australia's Great Barrier Reef, representing a new paradigm for analyzing how reefs respond to ocean acidification. David Kline and Ove Hoegh-Guldberg at the University of Queensland led the project.

Focusing conservation efforts

"Installing systems like this at reefs and other aquatic environments could be instrumental in helping us identify how ecosystems will change and which locations and ecosystem types are more likely to remain robust and resilient," said Lida Teneva, a Stanford doctoral student studying with Dunbar.

"From this, we can determine which habitats to focus our conservation efforts on as strongholds for the future," Teneva said.

Oceans absorb more than a quarter of all atmospheric carbon dioxide, concentrations of which are increasing at a rate twice as fast as at any time in the past 800,000 years or more. This leads to increasingly intense water acidification and widespread coral reef destruction. The potential loss is tremendous: reefs provide aquaculture, protein and storm protection for about 1 billion people worldwide.

Standard in situ studies of ocean acidification have multiple drawbacks, including a lack of control over treatment conditions and a tendency to expose organisms to more extreme and variable pH levels than those predicted in the next century. So, in 2007, the Monterey Bay Aquarium Research Institute developed a system that allows for highly controlled semi-enclosed experiments in the deep sea. For their recent study, Stanford researchers modified the system for use in coral reefs.

The complex device, the Coral Proto Free Ocean Carbon Enrichment (CP-FOCE) system, uses a network of sensors to monitor water conditions and maintain experimental pH levels as offsets from environmental pH. It avoids many of the problems associated with standard in situ ocean acidification studies, and unlike lab and aquarium experiments makes it possible to study amid natural conditions such as seasonal environmental changes and ambient seawater chemistry.


'/>"/>
Contact: Mark Shwartz
mshwartz@stanford.edu
650-723-9296
Stanford University
Source:Eurekalert

Related biology news :

1. Stanford scientists develop gene therapy approach to grow blood vessels in ischemic limbs
2. Keck award enables Carnegie Mellon and Stanford to dramatically expand crowdsourced RNA design
3. Climate change may create price volatility in the corn market, say Stanford and Purdue researchers
4. Stanford and MIT scientists win Perl-UNC Neuroscience prize
5. Americas clean energy policies need a reality check, say Stanford researchers
6. Support for climate change action drops, Stanford poll finds
7. Stanford scientists document fragile land-sea ecological chain
8. Study by UC Santa Barbara researchers suggests that bacteria communicate by touch
9. UC Santa Barbara researchers discover genetic link between visual pathways of hydras and humans
10. Researchers attempt to solve problems of antibiotic resistance and bee deaths in one
11. UNH researchers find African farmers need better climate change data to improve farming practices
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:8/1/2018)... ... ... Visikol CEO Dr. Michael Johnson has announced that through the rapid adoption of its ... its original 2018 revenue projections. , Over the last two years, Visikol has ... whole mount imaging techniques and advanced 3D cell culture assays . These ...
(Date:7/30/2018)... ... July 30, 2018 , ... TC Slade, an evidence-based ... biofield energy healing treated Vitamin D3 on the strength and health of bones. ... 260% increase in ALP, a bone-specific enzyme ,     Over 240% increase in ...
(Date:7/26/2018)... ... July 25, 2018 , ... Boston Biotech Conferences ... September 4, 2018 at The Hilton Boston Back Bay Hotel. This peer-to-peer meeting ... experiences and dissect the most relevant deals in biotech. , George Golumbeski recently ...
Breaking Biology News(10 mins):
(Date:8/14/2018)... England (PRWEB) , ... August 14, 2018 , ... ... received further impetus at the 11th Congress of the Chinese Association of Orthopaedic ... this event, Fule Science & Technology Development , Beijing, and Invibio ...
(Date:8/9/2018)... ... ... Since their establishment in 2012, ambitions have been high at Nicoya Lifesciences. ... from last year, the company is thrilled to announce the release of their new ... a private product launch event during the annual Protein Society Symposium in Boston on ...
(Date:8/7/2018)... , ... August 06, 2018 , ... PetPace , ... leader in pet genetic testing, today announced the launch of a groundbreaking study to ... extension of another ongoing general study of pregnant dogs sponsored by PetPace and conducted ...
(Date:7/27/2018)... ... July 27, 2018 , ... ... Advocacy Group (BRAG®) and representatives of the Biotechnology Innovation Organization (BIO) met ... recently-issued white paper, ‚ÄúProposal for a Toxic Substances Control Act (TSCA) Inventory ...
Breaking Biology Technology: