Navigation Links
Stanford researchers discover the 'anternet'
Date:8/29/2012

On the surface, ants and the Internet don't seem to have much in common. But two Stanford researchers have discovered that a species of harvester ants determine how many foragers to send out of the nest in much the same way that Internet protocols discover how much bandwidth is available for the transfer of data. The researchers are calling it the "anternet."

Deborah Gordon, a biology professor at Stanford, has been studying ants for more than 20 years. When she figured out how the harvester ant colonies she had been observing in Arizona decided when to send out more ants to get food, she called across campus to Balaji Prabhakar, a professor of computer science at Stanford and an expert on how files are transferred on a computer network. At first he didn't see any overlap between his and Gordon's work, but inspiration would soon strike.

"The next day it occurred to me, 'Oh wait, this is almost the same as how [Internet] protocols discover how much bandwidth is available for transferring a file!'" Prabhakar said. "The algorithm the ants were using to discover how much food there is available is essentially the same as that used in the Transmission Control Protocol."

Transmission Control Protocol, or TCP, is an algorithm that manages data congestion on the Internet, and as such was integral in allowing the early web to scale up from a few dozen nodes to the billions in use today. Here's how it works: As a source, A, transfers a file to a destination, B, the file is broken into numbered packets. When B receives each packet, it sends an acknowledgment, or an ack, to A, that the packet arrived.

This feedback loop allows TCP to run congestion avoidance: If acks return at a slower rate than the data was sent out, that indicates that there is little bandwidth available, and the source throttles data transmission down accordingly. If acks return quickly, the source boosts its transmission speed. The process determines how much bandwidth is available and throttles data transmission accordingly.

It turns out that harvester ants (Pogonomyrmex barbatus) behave nearly the same way when searching for food. Gordon has found that the rate at which harvester ants which forage for seeds as individuals leave the nest to search for food corresponds to food availability.

A forager won't return to the nest until it finds food. If seeds are plentiful, foragers return faster, and more ants leave the nest to forage. If, however, ants begin returning empty handed, the search is slowed, and perhaps called off.

Prabhakar wrote an ant algorithm to predict foraging behavior depending on the amount of food i.e., bandwidth available. Gordon's experiments manipulate the rate of forager return. Working with Stanford student Katie Dektar, they found that the TCP-influenced algorithm almost exactly matched the ant behavior found in Gordon's experiments.

"Ants have discovered an algorithm that we know well, and they've been doing it for millions of years," Prabhakar said.

They also found that the ants followed two other phases of TCP. One phase is known as slow start, which describes how a source sends out a large wave of packets at the beginning of a transmission to gauge bandwidth; similarly, when the harvester ants begin foraging, they send out foragers to scope out food availability before scaling up or down the rate of outgoing foragers.

Another protocol, called time-out, occurs when a data transfer link breaks or is disrupted, and the source stops sending packets. Similarly, when foragers are prevented from returning to the nest for more than 20 minutes, no more foragers leave the nest.

Prabhakar said that had this discovery been made in the 1970s, before TCP was written, harvester ants very well could have influenced the design of the Internet.

Gordon thinks that scientists have just scratched the surface for how ant colony behavior could help us in the design of networked systems.

There are 11,000 species of ants, living in every habitat and dealing with every type of ecological problem, Gordon said. "Ants have evolved ways of doing things that we haven't thought up, but could apply in computer systems. Computationally speaking, each ant has limited capabilities, but the collective can perform complex tasks.

"So ant algorithms have to be simple, distributed and scalable the very qualities that we need in large engineered distributed systems," she said. "I think as we start understanding more about how species of ants regulate their behavior, we'll find many more useful applications for network algorithms."


'/>"/>

Contact: Bjorn Carey, Stanford News Service
bccarey@stanford.edu
650-725-1944
Stanford University
Source:Eurekalert

Related biology news :

1. Stanford expert brings climate change science to heated Capitol Hill
2. Stanford-Penn State scientists use microbes to make clean methane
3. Stanford-SLAC team uses X-ray imaging to observe running batteries in action
4. Stanford researchers calculate global health impacts of the Fukushima nuclear disaster
5. Stanford scientists find molecule to starve lung cancer and improve ventilator recovery
6. Stanford marine biologist Barbara Block wins Rolex Award for Enterprise
7. Stanford researchers help predict the oceans of the future with a mini-lab
8. Stanford scientists document fragile land-sea ecological chain
9. Support for climate change action drops, Stanford poll finds
10. Americas clean energy policies need a reality check, say Stanford researchers
11. Stanford and MIT scientists win Perl-UNC Neuroscience prize
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/29/2016)... Florida , March 29, 2016 ... the "Company") LegacyXChange "LEGX" and SelectaDNA/CSI Protect are pleased ... in ink used in a variety of writing instruments, ... Buyers of originally created collectibles from athletes on LegacyXChange ... forensic analysis of the DNA. Bill ...
(Date:3/21/2016)... WAKEFIELD, Massachusetts , March 22, 2016 ... and facial recognition with passcodes for superior security ... MESG ), a leading provider of secure digital communications ... pilot their biometric technology and offer enterprise customers, particularly ... provide secure facial recognition and voice authentication within a ...
(Date:3/15/2016)... , March 15, 2016 Yissum Research ... the technology-transfer company of the Hebrew University, announced today ... remote sensing technology of various human biological indicators. Neteera ... $2.0 million from private investors. ... on the detection of electromagnetic emissions from sweat ducts, ...
Breaking Biology News(10 mins):
(Date:5/25/2016)... ... May 25, 2016 , ... The Ankle Plating ... options designed to address fractures of the distal tibia and fibula. This system ... Ankle Plating System 3 is composed of seven plate families that span the ...
(Date:5/25/2016)... (PRWEB) , ... May 25, 2016 , ... WEDI, the ... information exchange, today announced that Charles W. Stellar has been named by the WEDI ... CEO since January 2016. As an executive leader with more than 35 years of ...
(Date:5/24/2016)... 2016   MedyMatch Technology Ltd ., the data analytics ... decision support tools in the emergency room, announced today that ... Advanced Technology Industries (IATI) BioMed Conference. The ... 15th National Life Sciences and Technology Week, and is being ... in Tel Aviv, Israel . Gene ...
(Date:5/23/2016)... ... May 23, 2016 , ... PrecisionAg® Media has released its ... Beyond. The paper outlines the key trends that are creating both opportunities and ... a lot of highs and lows as the precision agriculture market has grown ...
Breaking Biology Technology: