Navigation Links
Stanford researchers develop tool for reading the minds of mice
Date:2/19/2013

If you want to read a mouse's mind, it takes some fluorescent protein and a tiny microscope implanted in the rodent's head.

Stanford scientists have demonstrated a technique for observing hundreds of neurons firing in the brain of a live mouse, in real time, and have linked that activity to long-term information storage. The unprecedented work could provide a useful tool for studying new therapies for neurodegenerative diseases such as Alzheimer's.

The researchers first used a gene therapy approach to cause the mouse's neurons to express a green fluorescent protein that was engineered to be sensitive to the presence of calcium ions. When a neuron fires, the cell naturally floods with calcium ions. Calcium stimulates the protein, causing the entire cell to fluoresce bright green.

A tiny microscope implanted just above the mouse's hippocampus a part of the brain that is critical for spatial and episodic memory captures the light of roughly 700 neurons. The microscope is connected to a camera chip, which sends a digital version of the image to a computer screen.

The computer then displays near real-time video of the mouse's brain activity as a mouse runs around a small enclosure, which the researchers call an arena.

The neuronal firings look like tiny green fireworks, randomly bursting against a black background, but the scientists have deciphered clear patterns in the chaos.

"We can literally figure out where the mouse is in the arena by looking at these lights," said Mark Schnitzer, an associate professor of biology and of applied physics and the senior author on the paper, recently published in the journal Nature Neuroscience.

When a mouse is scratching at the wall in a certain area of the arena, a specific neuron will fire and flash green. When the mouse scampers to a different area, the light from the first neuron fades and a new cell sparks up.

"The hippocampus is very sensitive to where the animal is in its environment, and different cells respond to different parts of the arena," Schnitzer said. "Imagine walking around your office. Some of the neurons in your hippocampus light up when you're near your desk, and others fire when you're near your chair. This is how your brain makes a representative map of a space."

The group has found that a mouse's neurons fire in the same patterns even when a month has passed between experiments. "The ability to come back and observe the same cells is very important for studying progressive brain diseases," Schnitzer said.

For example, if a particular neuron in a test mouse stops functioning, as a result of normal neuronal death or a neurodegenerative disease, researchers could apply an experimental therapeutic agent and then expose the mouse to the same stimuli to see if the neuron's function returns.

Although the technology can't be used on humans, mouse models are a common starting point for new therapies for human neurodegenerative diseases, and Schnitzer believes the system could be a very useful tool in evaluating pre-clinical research.

The work was published Feb. 10 in the online edition of Nature Neuroscience. The researchers have formed a company to manufacture and sell the device.


'/>"/>

Contact: Bjorn Carey
bccarey@stanford.edu
650-725-1944
Stanford University
Source:Eurekalert

Related biology news :

1. Going negative: Stanford scientists explore new technologies that remove atmospheric CO2
2. Stanford scientist uncovers the reproductive workings of a harvester ant dynasty
3. Stanford researcher sheds new light on the mysteries of spider silk
4. Stanford geoscientist cites critical need for basic research to unleash promising energy sources
5. Stanford scientists build the first all-carbon solar cell
6. Gladstone, Stanford scientists block toxic protein that plays key role in Lou Gehrigs disease
7. The 2013 HFSP Nakasone Award goes to Stephen Quake of Stanford University
8. Stanford bioengineer Christina Smolke wins NIH Directors Pioneer Award
9. Stanford researchers discover the anternet
10. Stanford expert brings climate change science to heated Capitol Hill
11. Stanford-Penn State scientists use microbes to make clean methane
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:11/22/2016)... November 22, 2016 According to the new market ... Print, Face, Vein, Signature, Voice), Multi-Factor), Component (Hardware and Software), Function (Contact ... MarketsandMarkets, the market is expected to grow from USD 10.74 Billion in ... 16.79% between 2016 and 2022. Continue Reading ... ...
(Date:11/17/2016)... 17, 2016 Global Market Watch: Primarily ... Banks, Population-Based Banks and Academics) market is to witness a ... Biobanks shows the highest Compounded Annual Growth Rate (CAGR) of ... during the analysis period 2014-2020. North America ... followed by Europe at 9.56% respectively. ...
(Date:11/15/2016)... Research and Markets has announced the addition of the ... offering. ... The global bioinformatics market is ... Billion in 2016, growing at a CAGR of 21.1% during the ... driven by the growing demand for nucleic acid and protein sequencing, ...
Breaking Biology News(10 mins):
(Date:12/9/2016)... ... ... Aditya Humad, Acting CFO of AxioMed and Managing Partner of KICVentures, is ... is now gaining interest from Silicon Valley. “It was satisfying to complete the due ... say that, “We expect interest to continue to rise as AxioMed completes its cleanroom ...
(Date:12/9/2016)... PUNE, India , December 9, 2016 ... Product & Services (Primer, Probe, Custom, Predesigned, Reagent Equipment), Application (Research, ... - Forecasts to 2021" published by MarketsandMarkets, the global market is ... Billion in 2016, at a CAGR of 10.6% during the forecast ... ...
(Date:12/8/2016)... Philadelphia, PA (PRWEB) , ... December 08, 2016 ... ... fan engagement platforms, the business of innovation is taking over sports. On Thursday, ... executive will explore how technology is disrupting the playing field at a Smart ...
(Date:12/8/2016)... (PRWEB) , ... December 08, 2016 , ... ... light to control cells — optogenetics — is key to exciting advances in ... the art, spatially patterned light projected via free-space optics stimulates small, transparent organisms ...
Breaking Biology Technology: