Navigation Links
Stanford researcher sheds new light on the mysteries of spider silk
Date:2/6/2013

As fibers go, there's never been anything quite like spider silk. Stretch it. Bend it. Soak it. Dry it out. Spider silk holds up. It is five times stronger than steel and can expand nearly a third greater than its original length and snap right back like new. Ounce-for-ounce spider silk is even stronger than Kevlar, the man-made fiber used in bulletproof vests.

It would be understandable to think that science knows all there is to know about the remarkable physics of spider silk, but the truth is far from that. Now, using a long-known-but-underutilized spectroscopy technique, a Stanford researcher has shed new light on the mysteries of spider silk.

On January 27, in a paper in the journal Nature Materials, post-doctoral scholar Kristie Koski described how she was able, for the first time, to non-invasively, non-destructively examine the mechanical properties of an intact, pristine spider web just as it was spun by the spider that created it. Koski is a researcher in the Yi Cui Group in the Department of Materials Science and Engineering at Stanford University and the first author of the study. The work was performed when she was a post-doc under Professor Jeff Yarger at Arizona State University.

The complete elastic response of spider silk is described by five elastic constants that define how the web reacts to any possible combination of forcespulling, twisting or shearing in any direction. All five have never been measured in a pristine spider web. At best, earlier studies have measured one or two of the five constants at a time and, even at that, only in isolated sections of a web. Structurally speaking, the old techniques are the equivalent of testing individual steel beams and cables and trying to extrapolate conclusions about the strength of a bridge.

Looking ahead, Koski believes that understanding the complete properties of a spider web exactly as it exists in nature is key to the engineering of improved "bio-inspired" materials that not only mimic, but also improve upon nature.

"My goal is to study the nanostructure of silk to understand not just how spider silk behaves as it does, but also why it behaves in such remarkable ways in hopes of someday creating better man-made fibers," said Koski.

Overlooked technique

The research was made possible by the use of a century-old-yet-overlooked measurement technique known as Brillouin spectroscopy. The technique shines laser light on the spider silks. The light produces sound waves in the silks, which, in turn, reflect some light back to the spectrometer. The researchers call the reflection "scattering."

"It is a bit like plucking the string of a violin, only we never have to physically touch the string to play it," said Koski.

The spectrometer measures small variations in the scattered light to ascertain the underlying tension of the silk being measured. The power of Brillouin scattering rests in the gentle way it gathers data enabling in situ measurements on spider webs, including mechanical properties at precise spots on the web such as silk intersections and glue spots.

Essentially, Koski and cohort have developed a non-invasive, non-destructive technique to measure the elasticity not just of individual strands of spider silk or even a few interconnected strands, as had those earlier studies, but of an entire intact spider web. Such exhaustive information was previously unobtainable with traditional stressstrain tests, which have to grip single strands or, at most, a few strands between two clamps to stretch them till they break.

"We don't have to touch the web to measure it," explained Koski.

The result is that Koski and collaborators are the first to quantify the complete linear elastic response of spider webs, testing for subtle variations in tension among discrete fibers, junctions, and glue spots for every type of deformation possible. It is a remarkable picture of the behavior of one of nature's most intriguing structures.

Surprises

Among the team's findings is that stiffness of a web is not uniform, but varies among isolated fibers, intersection points, and glue spots. For a structure formed supposedly of uniform spider silk, this was a bit of a surprise.

Evolutionarily, the researchers theorize this variation is advantageous to the spider in creating webs that are stiffer in some locations and more elastic in others. They think this might help the web withstand the elements and to better absorb the energy of captured prey.

Another surprise came when Koski looked at supercontraction. In high humiditywhen it rains or in the morning dewspider silk absorbs water, causing unrestrained fibers to shrink by as much as half, likely due to molecular disorganization caused by the water. It a curious response for something so key to a spider's survivability and it has raised some debate in the scientific community as to why nature would have favored supercontraction.

Scientists have posited three explanations for supercontraction. First, some think it is a mechanical constraint inherent in the molecular structure of silk, not an evolutionarily evolved phenomenon and that it has no bearing on the performance of a web. It's just a fact of spider silk. The second theory is that supercontraction helps the spider tailor the silk as it is being spun to meet varying environmental and structural requirements. Or, lastly, that supercontraction helps tighten the web when it gets wet, preventing the heavy water droplets from dragging the web down and preventing the spider from catching any prey.

Until this paper, the last theory could not be tested because researchers had no way to probe complete webs. With their clever technique, Koski and team were able to measure the elastic response of silk during supercontraction. They found that the silk, which is essentially a matrix of restrained fibers, stiffens with 100% humidity, thus supporting the tightening web hypothesis.

The research also lends credence to the theory that supercontraction helps the spider tailor the properties of the silk during spinning by pulling and restraining the silk threads and adjusting the water content.

"The possibility of adjusting mechanical properties by simply adjusting water content is inspirational from a bio-inspired mechanical structure perspective and could lead in interesting research directions as we try to invent new fibers," said Koski.


'/>"/>

Contact: Andrew Myers
admyers@stanford.edu
650-736-2245
Stanford School of Engineering
Source:Eurekalert  

Related biology news :

1. Stanford geoscientist cites critical need for basic research to unleash promising energy sources
2. Stanford scientists build the first all-carbon solar cell
3. Gladstone, Stanford scientists block toxic protein that plays key role in Lou Gehrigs disease
4. The 2013 HFSP Nakasone Award goes to Stephen Quake of Stanford University
5. Stanford bioengineer Christina Smolke wins NIH Directors Pioneer Award
6. Stanford researchers discover the anternet
7. Stanford expert brings climate change science to heated Capitol Hill
8. Stanford-Penn State scientists use microbes to make clean methane
9. Stanford-SLAC team uses X-ray imaging to observe running batteries in action
10. Stanford researchers calculate global health impacts of the Fukushima nuclear disaster
11. Stanford scientists find molecule to starve lung cancer and improve ventilator recovery
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Stanford researcher sheds new light on the mysteries of spider silk
(Date:6/3/2016)... 3, 2016 Das ... Nepal hat ein 44 ... geprägter Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, ... Produktion und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte ... Januar teilgenommen, aber Decatur wurde als konformste ...
(Date:6/2/2016)... Perimeter Surveillance & Detection Systems, Biometrics & ... & Other Service  The latest report from ... of the global Border Security market . Visiongain ... billion in 2016. Now: In November 2015 ... and hardware technologies for advanced video surveillance. ...
(Date:5/20/2016)... , May 20, 2016  VoiceIt is ... partnership with VoicePass. By working together, ... experience.  Because VoiceIt and VoicePass take slightly different ... engines increases both security and usability. ... excitement about this new partnership. "This ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... , ... June 27, 2016 , ... ... their findings on what they believe could be a new and helpful biomarker ... new research. Click here to read it now. , Biomarkers are ...
(Date:6/27/2016)... ... 27, 2016 , ... Rolf K. Hoffmann, former senior vice ... University of North Carolina Kenan-Flagler Business School effective June 27. , ... with a focus on the school’s international efforts, leading classes and participating in ...
(Date:6/24/2016)... TOKYO , June 24, 2016  Regular discussions on ... to take place between the two entities said Poloz. ... in Ottawa , he pointed to the ... and the federal government. ... Poloz said, "Both institutions have common economic goals, why not ...
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita Politecnica delle Marche ... with peritoneal or pleural mesothelioma. Their findings are the subject of a new article ... Diagnostic biomarkers are signposts in the blood, lung fluid or tissue of mesothelioma patients ...
Breaking Biology Technology: