Navigation Links
Stanford engineers redefine how the brain plans movement
Date:8/11/2011

In 1991, Carl Lewis was both the fastest man on earth and a profound long jumper, perhaps the greatest track-and-field star of all time in the prime of his career. On June 14th of that year, however, Carl Lewis was human. Leroy Burrell blazed through the 100-meters, besting him by a razor-thin margin of three-hundredths of a second. In the time it takes the shutter to capture a single frame of video, Lewis's three-year-old world record was gone.

In a paper just published in the journal Neuron, a team at the Stanford School of Engineering, led by electrical engineers Krishna Shenoy and Maneesh Sahani, explored the neurological explanations for why Lewis may have lost that day. The team, which included graduate students Afsheen Afshar, Gopal Santhanam, Byron Yu, and post-doctoral researcher Stephen Ryu, studied how the brain plans for and executes movements in reaction to a "go" signal.

The advent of new measurement technologies that permit researchers to monitor up to hundreds of individual neurons simultaneously, combined with new analytical mathematics, are providing a revealing look inside the brain and a better understanding of the neurological processes behind the planning and execution of motion.

"This research holds great promise in many areas of neuroscience, in particular human prostheses that can be controlled by the brain," said Shenoy.

Imprecision

The ability of humans to time the onset of planned movements is imprecise, often frustratingly so. In Carl Lewis's case, that imprecision cost him the race and the record. In fact, experts later pointed out that Burrell was not really the faster man that day; he was merely the faster off the blocks, beating Lewis at the gun by about five one-hundredths of a second, a difference that provided the margin of victory.

"Lewis may well have lost because he wasn't able to optimize his own motor plan and thus his reaction time was slow," said Shenoy.

"Thanks to new tools, for the first time we are able to understand what the neurons are telling us," said Sahani. "We can hypothesize about how the activity of a group of neurons gives rise to movement."

Testing the hypothesis

Graduate students trained two rhesus monkeys to perform the task of touching a target on cue. The researchers then neurosurgically implanted on the surface of the monkeys' brains a four-millimeter-square electronic chip arrayed with 100 tiny electrodes.

The researchers concentrated on one particular area of the brain known as the dorsal pre-motor cortical area, which shows high levels of activity during the delay when arm movement planning takes place. Activity in this region varies depending upon the direction, distance and speed of a pending movement.

Where most historical data had been limited to single neurons, the new technology allows researchers to monitor in real-time the activity of hundreds of individual neurons down to the millisecond. They can now account for reaction times in single motor events, something previously impossible.

New directions

What Shenoy, Sahani and colleagues have found is a departure from the way many scientists had theorized the process worked. The existing hypothesis, known as "rise-to-threshold," held that in anticipation of a "go" cue, our brains begin to plan the motions necessary to satisfactorily complete the movement by simply increasing the activity of neurons.

Neurons begin to fire, but not enough to cause the movement to take place. Upon the "go" signal, the brain accelerates this neural firing until it crosses a "threshold" initiating the motion. According to the theory, the longer a preparatory period one has, the greater the neural activity will be and, thus, the faster the reaction time.

The Stanford team was able to document a process based less on the amount of activity and more on the trajectory of the neural activity through the brain. In graphs of neural activity prior to display of the target, the monkeys' neural activity appears somewhat scattered. The moment a target is displayed, however, the neural activity concentrates in an activity region that the researchers dubbed the "optimal sub-space."

"We can watch as the pattern of neural activity gets focused in a specific region at the moment the target appears," explained Shenoy, "and then when the 'go' cue is given, the activity moves again, ending with the successful touching of the target."

The key to reaction time, the researchers found, is the relationship between where the neural activity is and its speed along the ideal trajectory just prior to the go cue. If the neural activity is closer to the final destination, then the reaction time will be shorter; if farther away, then longer.

"We get our brains into a sort of ideal zone an 'optimal space' of neural activity," said Shenoy. "The planned movement is possible from anywhere within this space, but some points those closer to the intended target along the ideal neural pathway are more advantageous than others in terms of the reaction time."

From this new understanding, the researchers were able to shape a deeper understanding of the neural patterns and craft a model to predict reaction time.

"Our model allows us to predict with four times greater accuracy what the reaction time of any single arm motion is going to be based on the neural activity observed prior to movement," said Sahani.

Practical Applications

Returning to the practical applications, Shenoy and Sahani pointed immediately to improving "neural prostheses" artificial limbs and computer cursors that can be manipulated by the brain to help amputees and paralytics.

"A fundamental understanding of planning and movement is a central question in building electronic interfaces that convert neural activity into signals that can control computer cursors and prosthetic arms. These are also major areas of our research," said Shenoy.

This project was supported by the Collaborative Research in Computational Neuroscience (CRCNS) program - a joint initiative of the National Institutes of Health (NIH) and the National Science Foundation to support partnerships between experimental and computational neuroscientists. Afshar was supported by the NIH Medical Scientist Training Program, and Shenoy is funded by an NIH Director's Pioneer Award.

"This was a unique collaboration; Shenoy's team with its expertise in physiology and engineering and Sahani's expertise in computational modeling enabled them to take an innovative approach to understanding how the brain initiates movement. This research may ultimately have a significant impact on the development of neural prosthetics" said Yuan Liu, Ph.D., from NIH's National Institute of Neurological Disorders and Stroke, who was involved in the early development of the CRCNS program.

"For most of us, reaction times usually don't matter. Not many of us have to perform at the level of a Carl Lewis, after all," said Sahani, "but if you are an amputee hoping for a state-of-the-art prosthetic hand that you can control with your own brain, then understanding how the brain plans and executes motion is very important."


'/>"/>

Contact: Andrew Myers
andrew.myers@stanford.edu
650-736-2245
Stanford School of Engineering
Source:Eurekalert

Related biology news :

1. Circadian clock may be critical for remembering what you learn, Stanford researchers say
2. Stanford researchers: Global warming is killing frogs and salamanders in Yellowstone Park
3. Key link in how plants adapt to climate discovered by Stanford researchers
4. Cell movements totally modular, Stanford study shows
5. Powerful online tool for protein analysis provided pro bono by Stanford geneticist
6. New World post-pandemic reforestation helped start Little Ice Age, say Stanford scientists
7. Stanford launches $100 million initiative to tackle energy issues
8. Biofuels boom could fuel rainforest destruction, Stanford researcher warns
9. From stem cells to new organs: Stanford and NYU scientists cross threshold in regenerative medicine
10. Stanford researchers develop biodegradable substitutes for wood, plastic bottles and other materials
11. Stanford scientists find new solutions for the arsenic-poisoning crisis in Asia
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/1/2016)... , Feb. 1, 2016  Today, the first ... (AHA) announced plans to develop a first of its ... power of IBM Watson. In the first application of ... IBM (NYSE: IBM ), and Welltok will create ... health assessments with cognitive analytics, delivered on Welltok,s health ...
(Date:1/25/2016)... 25, 2016  Glencoe Software, the world-leading supplier of ... industries, will provide the data management solution OMERO Plus ... Photo - ... Phenotypic analysis measures the characteristics and ... comparisons between states such as health and disease, the ...
(Date:1/20/2016)... 20, 2016   MedNet Solutions , an innovative ... of clinical research, is pleased to announce the attainment ... are the result of the company,s laser focus on ... , it,s comprehensive, easy-to-use and highly affordable cloud-based ... Key MedNet growth achievements in 2015 include: ...
Breaking Biology News(10 mins):
(Date:2/11/2016)...   BioInformant announces the February 2016 release ... Opportunities, Tools, and Technologies – Market Size, Segments, Trends, ... The first and only market ... BioInformant has more than a decade of historical information ... stem cell type. This powerful 175 page global strategic ...
(Date:2/11/2016)... ... February 11, 2016 , ... ... cell treatment clinic in Quito, Ecuador. The new facility will provide advanced protocols ... patients from around the world. , The new GSCG clinic is headed ...
(Date:2/10/2016)... Feb. 10, 2016  The Maryland House of Delegates ... announced that University of Maryland School of Medicine Dean ... University of Maryland Medical System President and CEO ... Medallion," the highest honor given to the public by ... Dean Reece and Mr. Chrencik for their ...
(Date:2/10/2016)... New York, and New York, New York (PRWEB) , ... ... ... Regeneron Pharmaceuticals Inc. (NASDAQ: REGN) today announced that it ... and develop new vaccines and immunotherapies for infectious diseases and cancer. ...
Breaking Biology Technology: