Navigation Links
Stamping out low cost nanodevices
Date:5/31/2011

A simple technique for stamping patterns invisible to the human eye onto a special class of nanomaterials provides a new, cost-effective way to produce novel devices in areas ranging from drug delivery to solar cells.

The technique was developed by Vanderbilt University engineers and described in the cover article of the May issue of the journal Nano Letters.

The new method works with materials that are riddled with tiny voids that give them unique optical, electrical, chemical and mechanical properties. Imagine a stiff, sponge-like material filled with holes that are too small to see without a special microscope.

For a number of years, scientists have been investigating the use of these materials called porous nanomaterials for a wide range of applications including drug delivery, chemical and biological sensors, solar cells and battery electrodes. There are nanoporous forms of gold, silicon, alumina, and titanium oxide, among others.

Simple stamping

A major obstacle to using the materials has been the complexity and expense of the processing required to make them into devices.

Now, Associate Professor of Electrical Engineering Sharon M. Weiss and her colleagues have developed a rapid, low-cost imprinting process that can stamp out a variety of nanodevices from these intriguing materials.

"It's amazing how easy it is. We made our first imprint using a regular tabletop vise," Weiss said. "And the resolution is surprisingly good."

The traditional strategies used for making devices out of nanoporous materials are based on the process used to make computer chips. This must be done in a special clean room and involves painting the surface with a special material called a resist, exposing it to ultraviolet light or scanning the surface with an electron beam to create the desired pattern and then applying a series of chemical treatments to either engrave the surface or lay down new material. The more complicated the pattern, the longer it takes to make.

About two years ago, Weiss got the idea of creating pre-mastered stamps using the complex process and then using the stamps to create the devices. Weiss calls the new approach direct imprinting of porous substrates (DIPS). DIPS can create a device in less than a minute, regardless of its complexity. So far, her group reports that it has used master stamps more than 20 times without any signs of deterioration.

Process can produce nanoscale patterns

The smallest pattern that Weiss and her colleagues have made to date has features of only a few tens of nanometers, which is about the size of a single fatty acid molecule. They have also succeeded in imprinting the smallest pattern yet reported in nanoporous gold, one with 70-nanometer features.

The first device the group made is a "diffraction-based" biosensor that can be configured to identify a variety of different organic molecules, including DNA, proteins and viruses. The device consists of a grating made from porous silicon treated so that a target molecule will stick to it. The sensor is exposed to a liquid that may contain the target molecule and then is rinsed off. If the target was present, then some of the molecules stick in the grating and alter the pattern of reflected light produced when the grating is illuminated with a laser.

According to the researchers' analysis, when such a biosensor is made from nanoporous silicon it is more sensitive than those made from ordinary silicon.

The Weiss group collaborated with colleagues in Chemical and Biomolecular Engineering to use the new technique to make nano-patterned chemical sensors that are ten times more sensitive than another type of commercial chemical sensor called Klarite that is the basis of a multimillion-dollar market.

The researchers have also demonstrated that they can use the stamps to make precisely shaped microparticles by a process called "over-stamping" that essentially cuts through the nanoporous layer to free the particles from the substrate. One possible application for microparticles made this way from nanoporous silicon are as anodes in lithium-ion batteries, which could significantly increase their capacity without adding a lot of weight.

Vanderbilt University has applied for a patent on the DIPS method.


'/>"/>

Contact: David F Salisbury
david.salisbury@vanderbilt.edu
615-343-6803
Vanderbilt University
Source:Eurekalert  

Related biology news :

1. Researchers create self-assembling nanodevices that move and change shape on demand
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Stamping out low cost nanodevices
(Date:1/12/2017)... , January 12, 2017 A new report by Allied Market ... the global biometric technology market is expected to generate revenue of $10.72 billion by ... Continue Reading ... Allied Market Research Logo ...      (Logo: http://photos.prnewswire.com/prnh/20140911/647229) ...
(Date:1/6/2017)... , Jan. 5, 2017  SomaLogic announced ... "Digital Life Alliance" established by iCarbonX, the ... to build a "Global Digital Health Ecosystem that ... a combination of individual,s biological, behavioral and psychological ... agreement between the companies, SomaLogic will provide proteomics ...
(Date:1/3/2017)... Onitor, provider of digital health technology for ... innovative biometric data-driven program designed to aid weight loss ... 2017 Consumer Electronics Show (CES) in Las ... the World Health Organization (WHO), have identified lifestyle risks ... are overweight or obese. WHO also states that more ...
Breaking Biology News(10 mins):
(Date:1/20/2017)... ... January 20, 2017 , ... The two newest companies to join the ... Vironika, a spin out from The Wistar Institute, and Sanguis, launched by a trio ... Market Street. , Vironika is developing a treatment for a chronic viral infection ...
(Date:1/20/2017)... 2017 http://www.Financialbuzz.com - ... leading causes of death worldwide. There were 8.2 million ... cancer related deaths increased gradually over time, the death ... of various cancers continues to drive demand of biological ... Global Market Insights, Inc. cancer biological therapy market size was ...
(Date:1/19/2017)...  Market Research Future has a half cooked research report on ... growing rapidly and expected to reach USD 450 Million by the ... ... has been assessed as a swiftly growing market and expected that ... coming future. There has been a tremendous growth in the prevalence ...
(Date:1/19/2017)... , Jan 19, 2017 Research and Markets ... has announced the addition of ... Material, Application - Forecast to 2025" report to their ... The report provides a detailed analysis on current and ... forecasts till 2025, using estimated market values as the base numbers ...
Breaking Biology Technology: