Navigation Links
Stacking traits in algae is focus of grant to Iowa State University researcher

AMES, Iowa - Genetically stacking traits in corn in order to increase production, resist insects, improve standablity and many other characteristics is so common in agriculture that producers have come to expect it.

Some traits found in corn help it function as a better source for biofuels.

Lately, biofuels research has included a focus on using algae as a source for biofuels.

The problem is no one really understands the genomes of most algae well enough to consider the possibility of stacking traits to make them produce more oil, offer better thermal resistance or any of the other characteristics needed.

Martin Spalding hopes to change that.

With the help of a $4.37 million grant from the U.S. Department of Energy as part of the American Recovery and Reinvestment Act, Spalding intends to develop a micro-algal platform that will allow micro-algae to be treated as a crop.

Spalding, professor and chair of genetics, development and cell biology and a council member of Iowa State's Plant Sciences Institute, is working with the one type of alga, Chlamydomonas, that is already genetically mapped.

Martin Spalding is working on stacking traits in Chlamydomonas algae.

"We have a sequenced genome, we understand the metabolism, and we have the tools available to us to work with this alga," he said.

Currently, the micro-algae used in biofuels production are wild strains found in nature and have certain traits that growers like, such as high oil production.

"Using those algae is a good strategy," Spalding said. "But the limitation with that strategy is that it has no flexibility, because the algae can't be manipulated genetically.

"The advantage of using a genetically flexible alga like Chlamydomonas is that we can manipulate it in various ways to tailor it to what the needs are," he said.

"Rather than look for an alga that produces trait 'x' or trait 'y' and then trying to adapt each new strain to production, which is a very difficult process, we are manipulating Chlamydomonas to meet x and y."

Spalding said the best analogy would be to stacking traits in corn.

Farmers could plant simple, unmanipulated lines of corn that have high yield, he said. But you wouldn't get the drought tolerance you want.

You could plant drought-tolerant corn, but you wouldn't get standability. But by genetically manipulating the corn, you can get all the traits you need.

Spalding believes his three-year study will produce many desirable traits in Chlamydomonas alga.

"Our project will probably lead to increased production of basically vegetable oil that can be converted to biodiesel," Spalding said. "Using the same process we are using to increase that oil production, we also could divert the production into hydrocarbons, which are closer to petroleum."

The end result could have several benefits.

"It will mean we will have a more sustainable source (of biofuels) than we have now -- more sustainable and more flexible," he said.

And since algae are not a feed source for animals, using algae for biofuels will not lead to higher commodity or food prices.


Contact: Dan Kuester
Iowa State University

Related biology news :

1. DHS Expands Biometrics-at-Sea Program to the Florida Straits
2. At Boston symposium, NARSAD researchers report on genes and family traits
3. DNA study unlocks mystery to diverse traits in dogs
4. Traits produced by melanin may signal the bearers capacity to combat free radicals
5. UC San Diego researchers use metagene portraits to reveal distinct stages of kidney formation
6. Patient-derived induced stem cells retain disease traits
7. Sugar, spice and puppy dog tails: Developing sex-typed personality traits and interests
8. Scientists devise efficient way of learning about complex corn traits
9. Seabed biodiversity of the Straits of Magellan and Drake Passage
10. Study involving more than 100 scientists provides new insights on green algae
11. Green algae -- the nexus of plant/animal ancestry
Post Your Comments:
Related Image:
Stacking traits in algae is focus of grant to Iowa State University researcher
(Date:11/17/2015)... Nov. 17, 2015 Pressure BioSciences, Inc. (OTCQB: ... development and sale of broadly enabling, pressure cycling technology ... industry, today announced it has received gross proceeds of ... Private Placement (the "Offering"), increasing the total amount raised ... more additional closings are expected in the near future. ...
(Date:11/11/2015)... Minn. , Nov. 11, 2015   MedNet Solutions ... entire spectrum of clinical research, is pleased to announce that ... in Clinical Trials (PCT) event, to be held November ... be able to view live demonstrations of iMedNet ... and learn how iMedNet has been able to ...
(Date:11/4/2015)... New York , November 4, 2015 ... to a new market report published by Transparency Market ... Share, Growth, Trends and Forecast 2015 - 2022", the global ... of US$ 30.3 bn by 2022. The market is ... the forecast period from 2015 to 2022. Rising security ...
Breaking Biology News(10 mins):
(Date:11/30/2015)... and MAGDEBURG, Germany , November 30, 2015 ... in Vienna, Austria to be ... of NeuroRehabilitation (ECNR) in Vienna, Austria ... NovaVision, a wholly owned subsidiary of Vycor Medical, Inc. ("Vycor") ... its Internet-delivered NovaVision Therapy Suite at the 3rd European ...
(Date:11/28/2015)... ... November 28, 2015 , ... • Jeon Jin Bio Corp, ... and rodent control solutions , Bird Free, ... works across all sensory modalities including visual, smell, taste and touch, enabling safe, effective ...
(Date:11/26/2015)... , November 26, 2015 ... --> Accutest Research Laboratories, a ... Research Organization (CRO), has formed a ... Center - Temple Health for joint ... ,     (Photo: ) , ...
(Date:11/25/2015)... BRUSSELS , November 25, 2015 ... la première fois les différences entre les souches ... de celles des êtres humains . Ces ... comprendre et envisager la prise en charge efficace de ... ent diagnostiqués chez les chats .    --> ...
Breaking Biology Technology: