Navigation Links
St. Jude identifies genomic causes of a certain type of leukemia relapse
Date:11/27/2008

Scientists at St. Jude Children's Research Hospital have identified distinctive genetic changes in the cancer cells of children with acute lymphoblastic leukemia (ALL) that cause relapse. The finding offers a pathway to designing treatments for ALL relapse in children and, ultimately, in adults.

The most common childhood cancer, ALL affects thousands of children annually in the United States. Although more than 80 percent of ALL cases are cured, relapse is a significant problem, with only 30 percent of children with relapsed ALL surviving.

Previous studies had found some evidence for genetic differences between the cancer cells of ALL patients at initial diagnosis and those who relapsed. That information was limited, and there had never been a broad comparison of the entire genomes of ALL at initial diagnosis and at subsequent relapse.

In the study that appears in the Nov. 28, 2008, issue of the journal Science, St. Jude researchers compared the genomes of the cancer cells of 61 childhood ALL patients when they were initially diagnosed and after they had relapsed. The investigators used millions of genetic markerscharacteristic genetic variations called single nucleotide polymorphismsas guideposts to pinpoint genetic changes characteristic of relapsed cells. Using these genetic markers, the researchers analyzed all of the cells' chromosomes to look for genetic changes called copy number abnormalities specific to relapsed cells. These changes are considered a major type of damaging gene alterations in ALL.

"In more than 90 percent of the cases, we found differences in the genetic alterations present at the time of diagnosis and at the time of relapse," said Charles Mullighan, M.D., Ph.D., assistant member in the St. Jude Department of Pathology and the paper's first author. "Examining the new changes that are arising at relapse tells us a lot about the individual genetic lesions that might confer resistance to treatment and be responsible for relapse."

According to the researchers, the relapse-related genetic changes commonly disrupted the machinery by which white blood cells called B cells mature and proliferate. Importantly, the relapse-related genetic changes only infrequently involved genes directly regulating the responsiveness to anti-cancer drugs.

The analysis also indicated that in most cases, the cancer cells responsible for relapse were related to those that originally gave rise to the cancer. Those relapse cells were present at low levels at diagnosis, the scientists' analysis indicated. However, in a few cases, the relapse cells evolved from genetically distinct cells, indicating that the relapsed leukemia was actually an entirely new cancer.

"The key finding in our work is that in the majority of cases, relapse is arising from a cell already present at the time of diagnosis," said James Downing, M.D., St. Jude Scientific Director, chair of the Department of Pathology and the paper's senior author. "That cell is selected for during treatment and then subsequently emerges as basis for relapse."

"The second key point is that we have found a large number of new genetic alterations that had not been previously identified as new targets of copy number changes at the time of relapse," Mullighan added.

Mullighan emphasized that the findings do not mean immediate treatments for ALL relapse. "But, this is a very important starting point because we have identified several key pathways that are the most common targets of new genetic changes at the time of relapse," he said.

Identification of these relapse pathways will lead to understanding of the biological machinery of relapse, and ultimately to drugs that target that machinery. Such studies of the relapse machinery are now underway at St. Jude.

In other further studies, the researchers are also looking for other relapse-related genetic alterations besides copy number abnormalities. They are also applying their findings to adult ALL, in which relapse is a more significant problem than in the childhood disease.


'/>"/>

Contact: Summer Freeman
summer.freeman@stjude.org
901-595-3061
St. Jude Children's Research Hospital
Source:Eurekalert

Related biology news :

1. LSUHSC research identifies key contributor to Alzheimers disease process
2. Pitt research identifies new target in brain for treating schizophrenia
3. Research identifies type of vaccine that holds promise in protecting against TB
4. Conaway Lab identifies novel mechanism for regulation of gene expression
5. HPV DNA test identifies cervical pre-cancerous disease in developing countries with 90% success rate
6. New method identifies meth hot spots
7. Study identifies changes to DNA in major depression and suicide
8. UCLA study identifies mechanism behind mind-body connection
9. International team identifies 21 new genetic risk factors for Crohns disease
10. Stowers Institutes Shilatifard Lab identifies new role for factor critical to transcription
11. Rong Li Lab identifies new role of inflammatory protein in PKD and a possible treatment
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/6/2017)... May 5, 2017 RAM Group ... a new breakthrough in biometric authentication based on ... mechanical properties to perform biometric authentication. These new sensors ... material created by Ram Group and its partners. This ... transportation, supply chains and security. Ram Group is ...
(Date:4/13/2017)... Calif. , April 13, 2017 UBM,s ... York will feature emerging and evolving technology ... Both Innovation Summits will run alongside the expo portion ... speaker sessions, panels and demonstrations focused on trending topics ... largest advanced design and manufacturing event will take place ...
(Date:4/11/2017)... MELBOURNE, Florida , April 11, 2017 ... "Company"), a security technology company, announces the appointment of independent ... John Bendheim to its Board of Directors, furthering the ... ... behalf of NXT-ID, we look forward to their guidance and ...
Breaking Biology News(10 mins):
(Date:10/12/2017)... (PRWEB) , ... October 12, 2017 , ... ... Sciences today announced the three Winners and six Finalists of the 2017 Blavatnik ... annually by the Blavatnik Family Foundation and administered by the New York Academy ...
(Date:10/12/2017)... ... October 12, 2017 , ... ... first-ever genomics analysis platform specifically designed for life science researchers to analyze ... pioneering researcher Rosalind Franklin, who made a major contribution to the discovery ...
(Date:10/11/2017)... ... 11, 2017 , ... Proscia Inc ., a data ... titled, “Pathology is going digital. Is your lab ready?” with Dr. Nicolas Cacciabeve, ... and how Proscia improves lab economics and realizes an increase in diagnostic confidence.* ...
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today ... designation to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) ... able to cross the cell membrane and bind intracellular STAT3 and inhibit its ...
Breaking Biology Technology: