Navigation Links
St. Jude finds factors that accelerate resistance to targeted therapy in lymphoblastic leukemia
Date:8/29/2007

Results of a study by investigators at St. Jude Childrens Research Hospital provide strong evidence for why the targeted therapy drug, imatinib, or Gleevec, which has revolutionized the treatment of chronic myelogenous leukemia, (CML) is often unable to prevent relapse of a particularly aggressive form of acute lymphoblastic leukemia (ALL). Targeted therapy drugs are designed to block the activity of a specific molecule, a strategy aimed at making treatments more effective and less toxic.

The findings may shed new light on why a small percentage of children with ALL do not benefit from treatment, while more than 90 percent of children treated with the latest therapies survive. The discovery could also help researchers better understand both the origins of this form of aggressive ALL as well as why it becomes resistant to imatinib; and this knowledge may lead to more effective treatments for patients who are not helped by current therapies.

CML and an aggressive form of ALL share the same critical mutationthe Philadelphia chromosome (Ph). Cells that have this mutation (Ph+ cells) produce a rogue growth-promoting enzyme called BCR-ABL. Now, work by a team headed by Charles J. Sherr, M.D., Ph.D., a Howard Hughes Medical Institute investigator and co-chair of the St. Jude Department of Genetics and Tumor Cell Biology, has shown that these two forms of leukemia part company in a crucial respect.

Many Ph+ ALL cells lack a tumor-suppressor gene called Arf, which is normally present in CML cells at the time the disease is first diagnosed, said Sherr. Stripped of the anti-tumor effects of Arf and nurtured by growth factors produced in the bone marrow, these ALL cells become less responsive to imatinib and more difficult to eliminate. Sherr reasons that the cells survival advantage increases their opportunity to develop mutations in the BCR-ABL protein, which prompt imatinib resistance.

A report on these results appears in the September 15 issue of Genes & Development.

The findings of the study not only suggest why Ph+ ALL is often insensitive to imatinib, but also imply that doctors might identify patients at high risk of failing this treatment by determining whether their leukemic cells lack the Arf gene, said Richard T. Williams, M.D., Ph.D., an assistant member in the St. Jude Department of Oncology and the papers first author. The development of drugs that also block the ability of other factors in the bone marrow to sustain the leukemic cells should render them more susceptible to imatinib and improve the outcome of ALL patients who are resistant to current forms of therapy. Discovery of the Philadelphia chromosome in the 1960s represented the first identification of a chromosome abnormality found in a specific kind of cancer. Ph+ ALL occurs in about 30 percent of all adult, but in only 4 percent of childhood cases. Its presence signals that patients of any age will likely have poor outcomes.

This study strongly suggests that a widely held explanation for how leukemias arise is not universally applicable. This view holds that leukemias arise from rare cancer stem cells, which do not make up the bulk of the tumor, but are the only cells required to regenerate the cancer after treatment, Williams said. However the new St. Jude study reveals that the combination of BCR-ABL activity and inactivation of Arf are sufficient to generate a uniform population of leukemia-initiating cellsany one of which can expand and induce rapidly fatal disease. Rather than comprising only a rare minority of cancer stem cells, each of these ALL cells is able to trigger and propagate the disease, so an effective therapy has to prevent the multiplication of each and every one of them.


'/>"/>
Contact: Summer Freeman
summer.freeman@stjude.org
901-495-3061
St. Jude Children's Research Hospital
Source:Eurekalert

Related biology news :

1. Current human embryonic stem cell lines contaminated UCSD/Salk team finds
2. Another Look Finds Promising Proteomics Test is Not Biologically Plausible
3. Study finds more than one-third of human genome regulated by RNA
4. ASU researchers finds novel chemistry at work to provide parrots vibrant red colors
5. Same mutation aided evolution in many fish species, Stanford study finds
6. NC State scientist finds soft tissue in T. rex bones
7. New Treatment Rivals Chemotherapy For Lymphoma, Study Finds
8. Genrate: a generative model that finds and scores new genes and exons in genomic microarray data
9. Genetically modified rice in China benefits farmers health, study finds
10. Survey finds silver contamination in North Pacific waters
11. Anti cancer virotherapy well tolerated in first human administration, research finds
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2016)... , UAE, April 20, 2016 ... be implemented as a compact web-based "all-in-one" system solution ... the biometric fingerprint reader or the door interface with ... of modern access control systems. The minimal dimensions of ... ID readers into the building installations offer considerable freedom ...
(Date:4/15/2016)... 2016 Research and Markets has ... Market 2016-2020,"  report to their offering.  , ... ,The global gait biometrics market is expected to ... period 2016-2020. Gait analysis generates multiple ... used to compute factors that are not or ...
(Date:4/13/2016)... -- IMPOWER physicians supporting Medicaid patients in Central ... in telehealth thanks to a new partnership with higi. ... patients can routinely track key health measurements, such as ... when they opt in, share them with IMPOWER clinicians ... retail location at no cost. By leveraging this data, ...
Breaking Biology News(10 mins):
(Date:4/28/2016)... Hill, Conn. (PRWEB) , ... April 28, 2016 ... ... of financing and ongoing support for Connecticut's innovative, growing companies, today announced the ... digital health and financial technology (fintech) companies. , “VentureClash looks to ...
(Date:4/27/2016)... ... , ... Shimadzu Scientific Instruments (SSI) will be showcasing a ... and Expo. Shimadzu’s high-performance instruments enable laboratories to test cannabis products for potency, ... by booth 1021 to learn how Shimadzu’s instruments can help improve QA/QC testing, ...
(Date:4/27/2016)... ... April 27, 2016 , ... The Board of Directors of ... John Tilton as Chief Commercial Officer.  Mr. Tilton joined Biohaven from Alexion Pharmaceuticals, ... leaders responsible for the commercialization of multiple orphan drug indications. Mr. Tilton ...
(Date:4/27/2016)... ... ... Global Stem Cells Group and the University of Santiago Biotechnology ... development initiatives for potential stem cell protocol management for 2016 – 2020. , ... meeting to establish a working agenda and foster initiatives to promote stem cell research ...
Breaking Biology Technology: