Navigation Links
Spying on a cellular director in the cutting room
Date:3/21/2010

ANN ARBOR, Mich.---Like a film director cutting out extraneous footage to create a blockbuster, the cellular machine called the spliceosome snips out unwanted stretches of genetic material and joins the remaining pieces to fashion a template for protein production.

But more than box office revenues are at stake: if the spliceosome makes a careless cut, disease likely results.

Using a new approach to studying the spliceosome, a team led by University of Michigan chemistry and biophysics professor Nils Walter, collaborating closely with a team led by internationally recognized splicing experts John Abelson and Christine Guthrie of the University of California, San Francisco, spied on the splicing process in single molecules.

The research is scheduled to be published online March 21 in Nature Structural and Molecular Biology.

Since its Nobel Prize-winning discovery in 1977, gene splicing has been studied in a number of organisms, including yeast and human cells, using both genetic and biochemical approaches. While these methods can yield snapshots, they can't monitor the ongoing process. The new study, which utilizes a technique called fluorescence resonance energy transfer (FRET) and a sophisticated microscope that watches single molecules in action, allows researchers to observe in real time the contortions involved in spliceosome assembly and operation.

By molecular-scale standards, the spliceosome is a monster of a machine, made up of five RNA and 100 or more protein subunits that agilely assemble, step-by-step, into the giant complex when it's time to carry out its work.

True to the movie director analogy, the spliceosome not only wields the scissors, it's also "the brain that decides where to cut," Walter said. The "footage" it works on is the genetic material contained in RNA molecules.RNA carries coded instructions for producing the proteins our body needs for building and repairing tissues, regulating body processes and many other sections called introns. The spliceosome's task is to recognize and excise introns. Once the introns are removed, the spliceosome can stitch together exons in various combinations. Thanks to this mixing and matching of exons, a relatively small number of genes (a little over 20,000 in humans) can serve as blueprints for a great variety of proteins.

Walter and colleagues spied on the splicing process by attaching fluorescent tags to exons on either side of an intron in a short section of RNA they designed specifically for such studies. When laser light is shined on the tags, FRET can detect how close together or far apart the exons are. Repeated observations over time result in a molecular-scale "movie" that reveals how parts of the RNA molecule wiggle around, both before and during splicing.

The researchers first studied the RNA in the absence of the spliceosome. "Conventional wisdom has been that the spliceosome directs the whole splicing process, that the RNA itself has little influence on it," Walter said. "But we saw the RNA molecule flexing on its own, with the intron folding and unfolding in a way that brings the exons closer together, suggesting a more active role for introns."

When the team added an extract containing spliceosome components, along with ATP---the energy currency that fuels spliceosome assembly---the distance between exons first increased, then decreased even more, and splicing occurred. Interestingly, the series of contortions that RNA went through during splicing was not a one-way path; the steps were reversible.

"Imagine the movie director having doubts about what scenes to cut and continuously going back and forth in holding different pieces of footage together before actually making a decision and splicing the film. That's what we saw happening at the molecular level," Walter said. "To our knowledge, our data provide the first direct glimpse of such reversible conformational changes during the splicing process."

Next, the researchers plan to attach fluorescent tags to different parts of the system to see how the various parts relate to one another in space and time during splicing. The eventual goal is to construct a comprehensive model showing how RNA and the spliceosome can so faithfully interact throughout the splicing process to avoid the onset of disease.


'/>"/>

Contact: Nancy Ross-Flanigan
rossflan@umich.edu
734-647-1853
University of Michigan
Source:Eurekalert

Related biology news :

1. Blocking cancer in its path: New cellular defect discovered
2. New microscopy technique offers close-up, real-time view of cellular phenomena
3. OHSU researchers discover cellular mechanism that protects against disease
4. Shifting cellular energy metabolism may help treat cardiovascular disease
5. Researchers identify a new gene involved in autophagy, the cellular recycling program
6. New edition of popular lab manual presents latest techniques for probing cellular dynamics
7. New discovery by Harvard scientists aims to correct cellular defects leading to diabetes
8. Looking for the heartbeat of cellular networks
9. Carnegie Mellon researchers to develop probes to study cellular GPS
10. Think what you eat: Studies point to cellular factors linking diet and behavior
11. The food-energy cellular connection revealed
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/20/2016)... DALLAS , June 20, 2016 ... criminal justice technology solutions for public safety, investigation, ... by the prisons involved, it has secured the ... Corrections (DOC) facilities for Managed Access Systems (MAS) ... (4) additional facilities to be installed by October, ...
(Date:6/9/2016)... 9, 2016  Perkotek an innovation leader in attendance control systems is proud to ... hours, for employers to make sure the right employees are actually signing in, and ... ... ... ...
(Date:6/3/2016)... 3, 2016 Das ... Nepal hat ein 44 ... geprägter Kennzeichen, einschließlich Personalisierung, Registrierung und IT-Infrastruktur, ... Produktion und Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte ... Januar teilgenommen, aber Decatur wurde als konformste ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... PHILADELPHIA , June 27, 2016  Liquid ... today announced the funding of a Sponsored Research ... study circulating tumor cells (CTCs) from cancer patients.  ... changes in CTC levels correlate with clinical outcomes ... therapies. These data will then be employed to ...
(Date:6/24/2016)... , ... June 24, 2016 , ... While the majority ... as the Cary 5000 and the 6000i models are higher end machines that use ... height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. is ... has received AOAC Research Institute approval 061601. , “This is another AOAC-RI approval ... Bob Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods ...
Breaking Biology Technology: