Navigation Links
Spontaneous mutations are major cause of congenital heart disease
Date:5/12/2013

Every year, thousands of babies are born with severely malformed hearts, disorders known collectively as congenital heart disease. Many of these defects can be repaired though surgery, but researchers don't understand what causes them or how to prevent them. New research shows that about 10 percent of these defects are caused by genetic mutations that are absent in the parents of affected children.

Although genetic factors contribute to congenital heart disease, many children born with heart defects have healthy parents and siblings, suggesting that new mutations that arise spontaneouslyknown as de novo mutationsmight contribute to the disease. "Until recently, we simply didn't have the technology to test for this possibility," says Howard Hughes Medical Institute (HHMI) investigator Richard Lifton. Lifton, who is at Yale School of Medicine, together with Christine Seidman, an HHMI investigator at Brigham and Women's Hospital and colleagues at Columbia, Mt. Sinai, and the University of Pennsylvania, collaborated to study congenital heart disease through the National Heart Lung and Blood Institute's Pediatric Cardiac Genomics Consortium.

Using robust sequencing technologies developed in recent years, the researchers compared the protein-coding regions of the genomes of children with and without congenital heart disease and their parents, and found that new mutations could explain about 10 percent of severe cases. The results demonstrated that mutations in several hundred different genes contribute to this trait in different patients, but were concentrated in a pathway that regulates key developmental genes. These genes affect the epigenome, a system of chemical tags that modifies gene expression. The findings were published online in the journal Nature on May 12, 2013.

For the current study, the investigators began with 362 families consisting of two healthy parents with no family history of heart problems and a child with severe congenital heart disease. By comparing genomes within families, they could pinpoint mutations that were present in each child's DNA, but not in his or her parents. The team also studied 264 healthy families to compare de novo mutations in the genomes of healthy children.

The team focused their gene-mutation search on the exome the small fraction of each person's genome that encodes proteins, where disease-causing mutations are most likely to occur. Children with and without congenital heart disease had about the same number of de novo mutations -- on average, slightly less than one protein-altering mutation each. However, the locations of those mutations were markedly different in the two groups. "The mutations in patients with congenital heart disease were found much more frequently in genes that are highly expressed in the developing heart," Seidman says.

The differences became more dramatic when the researchers zeroed in on mutations most likely to impair protein function, such as those that would cause a protein to be cut short. Children with severe congenital heart disease were 7.5 times more likely than healthy children to have a damaging mutation in genes expressed in the developing heart.

The researchers found mutations in a variety of genes, but one cellular pathway was markedly enriched in the children with heart defects. That pathway helps regulate gene activity by affecting how DNA is packaged inside cells. The body's DNA is wrapped around proteins called histones, and chemical tags called methyl groups are added to histones to control which genes are turned on and off. In children with congenital heart disease, the team found an excess of mutations in genes that affect histone methylation at two sites that are known to regulate key developmental genes.

Overall, the researchers found that de novo mutations contribute to 10 percent of cases of severe congenital heart disease. Roughly a third of this contribution is from the histone-methylation pathway, Lifton says. He also notes that a mutation in just one copy of a gene in this pathway was enough to markedly increase the risk of a heart defect.

Direct sequencing of protein-coding regions of the human genomes to hunt down de novo mutations has only been applied to one other common congenital diseaseautism. In that analysis, Lifton and his colleagues at Yale, as well as HHMI investigator Evan Eichler and colleagues at University of Washington, found mutations in some of the same genes mutated in congenital heart disease, and the same histone modification pathway appears to play a major role in autism as well, raising the possibility that this pathway may be perturbed in a variety of congenital disorders, Lifton says.

Even if the disease can't be prevented, identifying the mutations responsible for severe heart defects might help physicians better care for children with congenital heart disease. "After we repair the hearts of these children, some children do great and some do poorly," Seidman says. Researchers have long suspected that this might be due to differences in the underlying causes of the disease. Understanding those variations might help doctors improve outcomes for their patients.


'/>"/>

Contact: Jim Keeley
keeleyj@hhmi.org
301-215-8858
Howard Hughes Medical Institute
Source:Eurekalert

Related biology news :

1. Spontaneous gene glitches linked to autism risk with older dads
2. BRG1 mutations confer resistance to hormones in lung cancer
3. Gene mutations cause massive brain asymmetry
4. Interacting mutations promote diversity
5. Mutations in autism susceptibility gene increase risk in boys
6. UMMS researchers isolate gene mutations in patients with inherited amyotrophic lateral sclerosis
7. New gene mutations linked to ALS and nerve cell growth dysfunction
8. Key mutations discovered for most common childhood brain cancer
9. BGI reports the latest finding on NMNAT1 mutations linked to Leber congenital amaurosis
10. Gene mutations linked to most cases of rare disorder -- Alternating Hemoplegia of Childhood
11. New method provides fast, accurate, low cost analysis of BRCA gene mutations in breast cancer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/21/2017)... N.Y. and PORTLAND, Ore. ... ) and the Avamere Family of Companies (Avamere Health ... today announced a six-month research study that will apply ... improve eldercare at senior living and health centers. By ... Avamere hopes to gain insights into physical and environmental ...
(Date:2/16/2017)... 16, 2017  Genos, a community for personal ... has received Laboratory Accreditation from the College of ... to laboratories that meet stringent requirements around quality, ... processes. "Genos is committed to maintaining ... We,re honored to be receiving CAP accreditation," said ...
(Date:2/13/2017)...  RSA Conference -- RSA, a Dell Technologies business, ... enhance fraud detection and investigation across digital environments ... & Risk Intelligence Suite. The new platform is ... from internal and external sources as well as ... from targeted cybercrime attacks. "Fraudsters are ...
Breaking Biology News(10 mins):
(Date:2/21/2017)... 2017 /PRNewswire/ - SQI Diagnostics Inc. ("SQI" or the "Company") (TSX-V: ... the three months ended December 31, 2016. ... and diagnostics company that develops and commercializes proprietary technologies and ... ... the commercial milestones achieved in fiscal 2016," said Andrew ...
(Date:2/21/2017)... Switzerland (PRWEB) , ... February 21, 2017 , ... ... biopharmaceutical and biotech research and development (R&D), today announced the establishment of Genedata ... by Managing Director Kevin Teburi, a recognized expert in life science informatics. Creating ...
(Date:2/21/2017)... ... February 21, 2017 , ... ... pair its $200M operational capacity with its strategic internal leadership to provide ... affecting quality and operational management. With office locations in North Carolina, ...
(Date:2/21/2017)... and VANCOUVER, British Columbia , ... OGXI ) today announced that apatorsen results from two randomized ... of Clinical Oncology (ASCO) 2017 Genitourinary Cancers Symposium, held February ... . Clinical data from trials in bladder and prostate ... administered in combination with standard-of-care treatments. ...
Breaking Biology Technology: