Navigation Links
Speeding up drug discovery with rapid 3-D mapping of proteins
Date:5/30/2012

LA JOLLA, CA----A new method for rapidly solving the three-dimensional structures of a special group of proteins, known as integral membrane proteins, may speed drug discovery by providing scientists with precise targets for new therapies, according to a paper published May 20 in Nature Methods.

The technique, developed by scientists at the Salk Institute for Biological Studies, provides a shortcut for determining the structure of human integral membrane proteins (hIMPs), molecules found on the surface of cells that serve as the targets for about half of all current drugs.

Knowing the exact three-dimensional shape of hIMPs allows drug developers to understand the precise biochemical mechanisms by which current drugs work and to develop new drugs that target the proteins.

"Our cells contain around 8,000 of these proteins, but structural biologists have known the three-dimensional structure of only 30 hIMPs reported by the entire field over many years," says Senyon Choe, a professor in Salk's Structural Biology Laboratory and lead author on the paper. "We solved six more in a matter of months using this new technique. The very limited information on the shape of human membrane proteins hampers structure-driven drug design, but our method should help address this by dramatically increasing the library of known hIMP structures."

Integral membrane proteins are attached to the membrane surrounding each cell, serving as gateways for absorbing nutrients, hormones and drugs, removing waste products, and allowing cells to communicate with their environment. Many diseases, including Alzheimer's, heart disease and cancer have been linked to malfunctioning hIMPs, and many drugs, ranging from aspirin to schizophrenia medications, target these proteins.

Most of the existing drugs were discovered through brute force methods that required screening thousands of potential molecules in laboratory studies to determine if they had a therapeutic effect. Given a blueprint of the 3D structure of a hIMP involved in a specific disease, however, drug developers could focus only on molecules that are most likely to interact with the target hIMP, saving time and expense.

In the past, it was extremely difficult to solve the structure of hIMPs, due to the difficulty of harvesting them from cells and the difficulty of labeling the amino acids that compose the proteins, a key step in determining their three-dimensional configuration.

"One problem was that hIMPs serve many functions in a cell, so if you tried to engineer cells with many copies of the proteins on their membrane, they would die before you could harvest the hIMPs," says Christian Klammt, a postdoctoral researcher in Choe's lab and a first author on the paper.

To get around this, the scientists created an outside-the-cell environment, called cell-free expression system, to synthesize the proteins. They used a plexiglass chamber that contained all the biochemical elements necessary to manufacture hIMPs as if they were inside the cell. This system provided the researchers with enough of the proteins to conduct structural analysis.

The cell-free method also allowed them to easily add labeled amino acids into the biochemical stew, which were then incorporated into the proteins. These amino acids gave off telltale structural clues when analyzed with nuclear magnetic resonance spectroscopy, a method for using the magnetic properties of atoms to determine a molecule's physical and chemical properties.

"It was very difficult and inefficient to introduce labeled amino acids selectively into the protein produced in live cells," says Innokentiy Maslennikov, a Salk staff scientist and co-first author on the paper. "With a cell-free system, we can precisely control what amino acids are available for protein production, giving us isotope-labeled hIMPs in large quantities. Using a proprietary labeling strategy we devised a means to minimize the number of samples to prepare."

Prior methods might take up to a year to determine a single protein structure, but using their new method, the Salk scientists determined the structure of six hIMPs within just 18 months. They have already identified 38 more hIMPs that are suitable for analysis with their technique, and expect it will be used to solve the structure for many more.

Paul Slesinger, an associate professor in Salk's Clayton Foundation Laboratories for Peptide Biology, contributed to the research, as did scientists at the Joint Center for Biosciences in Korea, ETH Zurich in Switzerland and the University of California San Francisco.

Other authors on the paper were Monika Bayrhuber, Cdric Eichmann, Navratna Vajpai, Ellis Jeremy Chua Chiu, Katherine Blain, Luis Esquivies, June Hyun Jung Kwon, Bartosz Balana, Ursula Pieper, Andrej Sali, Witek Kwiatkowski and Roland Riek.


'/>"/>

Contact: Andy Hoang
ahoang@salk.edu
619-861-5811
Salk Institute
Source:Eurekalert  

Related biology news :

1. Systems biology brings hope of speeding up drug development
2. Graphene may hold key to speeding up DNA sequencing
3. Chemical equator discovery will aid pollution mapping
4. Sirtris review of sirtuin therapeutics for diseases of aging in Nature Reviews Drug Discovery
5. Groundbreaking discovery may lead to stronger antibiotics
6. Discovery of natural compounds that could slow blood vessel growth
7. Nanoscopic screening process to speed drug discovery
8. FSU researchers discovery leads to $1.5 million grant, potential new treatment of liver fibrosis
9. New $11 million center to speed production of new compounds for drug discovery
10. Discovery of giant roaming deep sea protist provides new perspective on animal evolution
11. New discovery may enhance MRI scans, lead to portable MRI machines
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Speeding up drug discovery with rapid 3-D mapping of proteins
(Date:2/2/2016)... , Feb. 2, 2016   Parabon NanoLabs ... the U.S. Army Research Office and the Defense ... and sensitivity of the company,s Snapshot Kinship ... Mission and, more generally, defense-related DNA forensics.  Although ... capabilities (predicting appearance and ancestry from DNA evidence), ...
(Date:2/1/2016)... 2016 Rising sales of consumer ... touchfree intuitive gesture control market size ... of consumer electronics coupled with new technological advancements to ... size through 2020   --> ... technological advancements to drive global touchfree intuitive gesture control ...
(Date:2/1/2016)...  Wocket® smart wallet ( www.wocketwallet.com ) announces the launch of a ... . Las Vegas , where Joey appeared at ... Las Vegas , where Joey appeared at the Wocket booth ... ad was filmed at the Consumer Electronics Show (CES2016) in ... meet and greet fans. --> --> ...
Breaking Biology News(10 mins):
(Date:2/3/2016)... ... February 03, 2016 , ... Data ... new solutions focused on social housing of small animal models in research studies. ... data.¹, ² , DSI’s HD-S11 implant has evolved to allow researchers to simultaneously ...
(Date:2/3/2016)... ... ... Big games come and go, but only one will showcase the bravery ... nationally recognized brain diagnostics and technology company, will join NFL alumni and celebrities as ... Flag Football Game on February 6, 2016. , The event, scheduled to kick ...
(Date:2/2/2016)... , Feb. 2, 2016 INTRODUCTION ... of commensal, symbiotic and pathogenic microorganisms that reside ... body. The human microbiome is involved in various ... life. Majority of the microorganisms benefit humans by ... not possess. These include metabolism of complex carbohydrates, ...
(Date:2/2/2016)... and AARHUS, Denmark , ... and researchers gain access to QIAGEN,s enhanced solutions for ... ; Frankfurt Prime Standard: QIA) today announced new partnerships ... its market leading bioinformatics solutions for microbiome, metagenomics and ... Standard: QIA) today announced new partnerships to enhance the ...
Breaking Biology Technology: