Navigation Links
Specially-designed soils could help combat climate change
Date:3/31/2008

Could part of the answer to saving the Earth from global warming lie in the earth beneath our feet?

A team from Newcastle University aims to design soils that can remove carbon from the atmosphere, permanently and cost-effectively. This has never previously been attempted anywhere in the world. The research is being funded by the Engineering and Physical Sciences Research Council.

The concept underlying the initiative exploits the fact that plants, crops and trees naturally absorb atmospheric carbon dioxide (CO2) during photosynthesis and then pump surplus carbon through their roots into the earth around them. In most soils, much of this carbon can escape back to the atmosphere or enters groundwater.

But in soils containing calcium-bearing silicates (natural or man-made), the team believe the carbon that oozes out of a plants roots may react with the calcium to form the harmless mineral calcium carbonate. The carbon then stays securely locked in the calcium carbonate, which simply remains in the soil, close to the plants roots, in the form of a coating on pebbles or as grains.

The scientists are investigating whether this process occurs as it may encourage the growing of more plants, crops etc in places where calcium-rich soils already exist. It would also open up the prospect that bespoke soils can be designed (i.e. with added calcium silicates, or specific plants) which optimise the carbon-capture process. Such soils could play a valuable role in carbon abatement all over the globe.

The team will first try to detect calcium carbonate in natural soils that have developed on top of calcium-rich rocks or been exposed to concrete dust (which contains man-made calcium silicates). They will then study artificial soils made at the University from a mixture of compost and calcium-rich rock. Finally, they will grow plants in purpose-made soils containing a high level of calcium silicates and monitor accumulation of calcium carbonate there.

The multi-disciplinary research team, including civil engineers, geologists, biologists and soil scientists, is led by David Manning, Professor of Soil Science at Newcastle University. Scientists have known about the possibility of using soil as a carbon sink* for some time, says Professor Manning. But no-one else has tried to design soils expressly for the purpose of removing and permanently locking up carbon. Once weve confirmed the feasibility of this method of carbon sequestration, we can develop a computer model that predicts how much calcium carbonate will form in specific types of soil, and how quickly. That will help us engineer soils with optimum qualities from a carbon abatement perspective. A key benefit is that combating climate change in this way promises to be cheap compared with other processes.

Significant scope could exist to incorporate calcium-rich, carbon-locking soils in land restoration, land remediation and other development projects. Growing bioenergy crops on these soils could be one attractive option.

The process were exploring might be able to contribute around 5-10% of the UKs carbon reduction targets in the future, says Professor Manning. We could potentially see applications in 2-3 years, including a number of quick wins in the land restoration sector.


'/>"/>

Contact: Natasha Richardson
natasha.richardson@epsrc.ac.uk
44-017-934-44404
Engineering and Physical Sciences Research Council
Source:Eurekalert

Related biology news :

1. Compost can turn agricultural soils into a carbon sink, thus protecting against climate change
2. Tropical soils impede landmine detection
3. Earths soils bear unmistakable footprints of humans
4. Alliance for a Green Revolution in Africa commits 180M to revive farmers depleted soils
5. New insights into the fate of antiparasitics in manure and manured soils
6. Chemical compound present in detergents produce bacteria alterations in agricultural soils
7. CU researcher engineers sorghum that grows in poisonous soils
8. U-M ballast-free ship could cut costs while blocking aquatic invaders
9. Ant guts could pave the way for better drugs
10. Solving an avian scourge could also provide benefits to human health
11. Newly defined signaling pathway could mean better biofuel sources
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/17/2017)... Florida , April 17, 2017 NXT-ID, ... technology company, announces the filing of its 2016 Annual Report on ... and Exchange Commission. ... on Form 10-K is available in the Investor Relations section of ... as on the SEC,s website at http://www.sec.gov . ...
(Date:4/11/2017)... 11, 2017 No two people are ... the New York University Tandon School of Engineering ... found that partial similarities between prints are common ... mobile phones and other electronic devices can be ... vulnerability lies in the fact that fingerprint-based authentication ...
(Date:4/5/2017)... KEY FINDINGS The global market for stem ... 25.76% during the forecast period of 2017-2025. The rise ... growth of the stem cell market. Download ... The global stem cell market is segmented on the ... cell market of the product is segmented into adult ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... Singh Biotechnology today announced ... to SBT-100, its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B ... to cross the cell membrane and bind intracellular STAT3 and inhibit its function. ...
(Date:10/10/2017)... ... October 10, 2017 , ... ... advancing targeted antibody-drug conjugate (ADC) therapeutics, today confirmed licensing rights that give ... Liposomal Nanoparticle), a technology developed in collaboration with Children’s Hospital Los Angeles ...
(Date:10/10/2017)... ... October 10, 2017 , ... Dr. Bob Harman, founder and CEO ... Diego Rotary Club. The event entitled “Stem Cells and Their Regenerative ... attendees. Dr. Harman, DVM, MPVM was joined by two human doctors: Peter B. ...
(Date:10/10/2017)... SANTA CRUZ, Calif. , Oct. 10, 2017 /PRNewswire/ ... SBIR grant from the NIH to develop RealSeq®-SC (Single ... preparation kit for profiling small RNAs (including microRNAs) from ... Cell Analysis Program highlights the need to accelerate development ... "New techniques for ...
Breaking Biology Technology: