Navigation Links
Specially-designed soils could help combat climate change

Could part of the answer to saving the Earth from global warming lie in the earth beneath our feet?

A team from Newcastle University aims to design soils that can remove carbon from the atmosphere, permanently and cost-effectively. This has never previously been attempted anywhere in the world. The research is being funded by the Engineering and Physical Sciences Research Council.

The concept underlying the initiative exploits the fact that plants, crops and trees naturally absorb atmospheric carbon dioxide (CO2) during photosynthesis and then pump surplus carbon through their roots into the earth around them. In most soils, much of this carbon can escape back to the atmosphere or enters groundwater.

But in soils containing calcium-bearing silicates (natural or man-made), the team believe the carbon that oozes out of a plants roots may react with the calcium to form the harmless mineral calcium carbonate. The carbon then stays securely locked in the calcium carbonate, which simply remains in the soil, close to the plants roots, in the form of a coating on pebbles or as grains.

The scientists are investigating whether this process occurs as it may encourage the growing of more plants, crops etc in places where calcium-rich soils already exist. It would also open up the prospect that bespoke soils can be designed (i.e. with added calcium silicates, or specific plants) which optimise the carbon-capture process. Such soils could play a valuable role in carbon abatement all over the globe.

The team will first try to detect calcium carbonate in natural soils that have developed on top of calcium-rich rocks or been exposed to concrete dust (which contains man-made calcium silicates). They will then study artificial soils made at the University from a mixture of compost and calcium-rich rock. Finally, they will grow plants in purpose-made soils containing a high level of calcium silicates and monitor accumulation of calcium carbonate there.

The multi-disciplinary research team, including civil engineers, geologists, biologists and soil scientists, is led by David Manning, Professor of Soil Science at Newcastle University. Scientists have known about the possibility of using soil as a carbon sink* for some time, says Professor Manning. But no-one else has tried to design soils expressly for the purpose of removing and permanently locking up carbon. Once weve confirmed the feasibility of this method of carbon sequestration, we can develop a computer model that predicts how much calcium carbonate will form in specific types of soil, and how quickly. That will help us engineer soils with optimum qualities from a carbon abatement perspective. A key benefit is that combating climate change in this way promises to be cheap compared with other processes.

Significant scope could exist to incorporate calcium-rich, carbon-locking soils in land restoration, land remediation and other development projects. Growing bioenergy crops on these soils could be one attractive option.

The process were exploring might be able to contribute around 5-10% of the UKs carbon reduction targets in the future, says Professor Manning. We could potentially see applications in 2-3 years, including a number of quick wins in the land restoration sector.


Contact: Natasha Richardson
Engineering and Physical Sciences Research Council

Related biology news :

1. Compost can turn agricultural soils into a carbon sink, thus protecting against climate change
2. Tropical soils impede landmine detection
3. Earths soils bear unmistakable footprints of humans
4. Alliance for a Green Revolution in Africa commits 180M to revive farmers depleted soils
5. New insights into the fate of antiparasitics in manure and manured soils
6. Chemical compound present in detergents produce bacteria alterations in agricultural soils
7. CU researcher engineers sorghum that grows in poisonous soils
8. U-M ballast-free ship could cut costs while blocking aquatic invaders
9. Ant guts could pave the way for better drugs
10. Solving an avian scourge could also provide benefits to human health
11. Newly defined signaling pathway could mean better biofuel sources
Post Your Comments:
(Date:11/12/2015)... 11, 2015   Growing need for low-cost, ... has been paving the way for use of ... discrete analytes in clinical, agricultural, environmental, food and ... used in medical applications, however, their adoption is ... to continuous emphasis on improving product quality and ...
(Date:11/9/2015)... , Nov. 09, 2015 ... addition of the "Global Law Enforcement ... offering. --> ) has ... Law Enforcement Biometrics Market 2015-2019" report ... and Markets ( ) has announced ...
(Date:10/29/2015)... 2015   MedNet Solutions , an innovative SaaS-based ... clinical research, is pleased to announce that it has ... as one of only three finalists for a ... and Growing" category. The Tekne Awards honor Minnesota ... technology innovation and leadership. iMedNet™ eClinical ...
Breaking Biology News(10 mins):
(Date:11/24/2015)... 24, 2015  Asia-Pacific (APAC) holds the third-largest ... market. The trend of outsourcing to low-cost locations ... higher volume share for the region in the ... margins in the CRO industry will improve. ... ( ), finds that the market earned ...
(Date:11/24/2015)... , Nov. 24, 2015 Cepheid (NASDAQ: ... be speaking at the following conference, and invited investors ... York, NY      Tuesday, December 1, 2015 at ... York, NY      Tuesday, December 1, 2015 at ... Healthcare Conference, New York, NY ...
(Date:11/24/2015)... - iCo Therapeutics ("iCo" or "the Company") (TSX-V: ICO) ... quarter ended September 30, 2015. Amounts, unless specified ... under International Financial Reporting Standards ("IFRS"). ... Andrew Rae , President & CEO of iCo ... value enriching for this clinical program, but also ...
(Date:11/24/2015)... ... November 24, 2015 , ... International Society ... one of the premier annual events for pharmaceutical manufacturing: 2015 Annual Meeting. The ... where ISPE hosted the largest number of attendees in more than a decade. ...
Breaking Biology Technology: