Navigation Links
Soybean germplasm evaluations give US a head start against soybean rust pathogen
Date:4/4/2011

When soybean rust first appeared in the United States in late 2004, many producers feared devastating yield losses similar to losses experienced in other parts of the world. In response to this threat, researchers have been evaluating USDA soybean germplasm accessions for resistance to this fungus, and a recent report in Crop Science identifies some of these resistant sources.

"Our goal was to determine which of the soybean germplasm accessions were resistant in the United States and whether they were resistant throughout the southern United States," explained David Walker, USDA-ARS scientist and assistant professor in the U of I Department of Crop Sciences. "Early on, we didn't know anything about the uniformity of the fungus populations in the mid-southern and southeastern states. It's tricky because the threat of this fungus is very dependent on weather conditions."

For example, Walker said this fungus reproduces more rapidly when temperatures are moderate and where there's abundant rainfall and heavy dew, causing spores to germinate and infect plants. The spores can move by wind and travel hundreds of miles to start a new infection, making it hard to contain.

This concern prompted field evaluations of 576 accessions from the USDA Soybean Germplasm Collection for resistance to soybean rust at seven locations in the southern United States between 2006 and 2010. Accessions were rated for disease severity in all year-location environments, and for disease incidence, fungal sporulation, lesion type, and/or uredinia density in certain environments. The Crop Science article reports the results of the 2006-2008 tests.

"While none of the accessions were immune in all environments, 64 were resistant in two or more locations each year that they were tested," Walker said. "In addition, some appeared to be more resistant in certain environments than in others."

Walker's team also included Randy Nelson and Glen Hartman of the USDA-ARS and the U of I Department of Crop Sciences, as well as collaborators from universities in Louisiana, Alabama, Georgia and South Carolina. The researchers discovered that only a subset of the soybean germplasm accessions that were resistant in South America or Africa (where soybean rust has the potential to cause up to 80 percent yield loss in some years) were resistant in the southern United States.

"The Rpp1 and Rpp3 resistance genes were found to be more effective in the United States, whereas the Rpp2 and Rpp4 genes were found to be more effective in South America," Walker said. "Nearly all of the soybean accessions that were found to be resistant to soybean rust in the United States were originally collected from southern Japan, northern Vietnam, or the island of Java (Indonesia)."

This suggests that the Brazil populations of soybean rust aren't the ancestors of the rust brought into the United States, he said. Many believed an October 2004 hurricane brought the spores from Central America or northern South America across the Gulf into the southern United States.

"It's possible it happened that way, but it seems less likely now," Walker said. "It's still a mystery how these spores got into the United States. Regardless, the soybean germplasm accessions that are resistant in South America are not necessarily resistant in the United States."

These discoveries have allowed soybean breeders to develop improved breeding lines that combine the resistance of Asian germplasm accessions with the higher yields and important agronomic traits of North American cultivars, Walker said. These lines are now being tested in the United States but are not in the public sector yet.

"It's difficult to transfer useful genes from Asian soybean types because the useful genes are often genetically linked to genes that cause problems with yield such as shattering, lodging and other undesirable traits," he said. "It takes time to transfer a piece of DNA that has a useful gene into a breeding line or cultivar adapted to the United States, then breed long enough to get rid of the undesirable genes that are linked to the useful one. We are trying to isolate the resistance genes without the undesirable genes from the same chromosome."

Currently, two cultivars are being grown in Brazil that have rust resistance, he said. Several more are under development.

"If soybean rust becomes more of a problem in the United States, we have a head start on it," Walker said. "We already have resistance in improved genetic backgrounds, so it can now be transferred more quickly into the top cultivars at any particular time."

In addition to developing rust-resistant breeding lines that are agronomically competitive, and would therefore be useful to both public- and private-sector breeders, Walker said they are interested in mapping rust resistance genes and other useful genes that are segregated in the same populations.


'/>"/>

Contact: Jennifer Shike
jshike@illinois.edu
217-244-0888
University of Illinois College of Agricultural, Consumer and Environmental Sciences
Source:Eurekalert  

Related biology news :

1. Research proves new soybean meal sources are good fish meal alternatives
2. Study shows smaller rows contribute to more soybean yields in colder climates
3. Pest-resistant soybeans grow out of MSU research lab
4. Mapping out pathways to better soybeans
5. In elevated carbon dioxide, soybeans stumble but cheatgrass keeps on truckin
6. Gene discovery may lead to new varieties of soybean plants
7. U of I researchers identify new soybean aphid biotype
8. Additive copper-zinc interaction affects toxic response in soybean
9. Eat soybeans to prevent diseases
10. Discovering soybean plants resistant to aphids and a new aphid
11. Weed resistance to glyphosate in genetically modified soybean cultivation in Argentina
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Soybean germplasm evaluations give US a head start against soybean rust pathogen
(Date:4/5/2017)... 2017 KEY FINDINGS The global ... a CAGR of 25.76% during the forecast period of ... factor for the growth of the stem cell market. ... MARKET INSIGHTS The global stem cell market is ... geography. The stem cell market of the product is ...
(Date:3/30/2017)... March 30, 2017 The research team of ... three-dimensional (3D) fingerprint identification by adopting ground breaking 3D fingerprint minutiae ... realm of speed and accuracy for use in identification, crime investigation, ... cost. ... A research ...
(Date:3/27/2017)... CENTRE, N.Y. , March 27, 2017 /PRNewswire-USNewswire/ ... Healthcare Information and Management Systems Society (HIMSS) Analytics ... Outpatient EMR Adoption Model sm . In addition, ... 12% of U.S. hospitals using an electronic medical ... CHS for its high level of EMR usage ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... ... October 11, 2017 , ... The ... endogenous context, enabling overexpression experiments and avoiding the use of exogenous expression plasmids. ... is transformative for performing systematic gain-of-function studies. , This complement to loss-of-function ...
(Date:10/11/2017)... ... 2017 , ... Proscia Inc ., a data solutions ... “Pathology is going digital. Is your lab ready?” with Dr. Nicolas Cacciabeve, Managing ... how Proscia improves lab economics and realizes an increase in diagnostic confidence.* ...
(Date:10/11/2017)... ... October 11, 2017 , ... Disappearing forests and increased emissions are the ... million people each year. Especially those living in larger cities are affected by air ... one of the most pollution-affected countries globally - decided to take action. , “I ...
(Date:10/10/2017)... ... October 10, 2017 , ... San Diego-based team building ... corporate rebranding initiative announced today. The bold new look is part of a ... company moves into a significant growth period. , It will also expand its service ...
Breaking Biology Technology: