Navigation Links
Sorption energy storage and conversion for cooling and heating
Date:3/18/2014

In many industrialized countries, city skylines are dominated by imposing glass faades and skyscrapers made of concrete and steel. There is a drawback to these magnificent structures, though they often get very hot in the summer, so they mostly need elaborate and costly air conditioning systems. And these already account for some 14 percent of Germany's annual energy consumption. Experts reckon that total cooling requirements in buildings will triple by 2020.

Cooling and heating using metal organic frameworks

Thermally driven cooling systems are one possible alternative to traditional air conditioning. These systems use the evaporation of fluids such as water at low pressure to remove heat from the environment an energy-efficient cooling method. Now researchers from the Fraunhofer Institute for Solar Energy Systems ISE in Freiburg are working on innovative sorbents that can store a particularly large amount of water vapor. To develop this material, researchers have turned to metal organic frameworks (MOFs). "The material is highly porous and can adsorb more than 1.4 times its own weight in water," says Dr. Stefan Henniger from Fraunhofer ISE, describing one distinctive property of these sorbents.

MOFs can also be used in thermally driven heat pumps. Whereas electric heat pumps feature an electrical compressor, in these pumps an adsorbent performs the role of a "thermal compressor" while water serves as coolant. The gaseous coolant is adsorbed by the sorbent, thus leaving the gaseous phase. The heat that results from this adsorption into the material's hollow interior is transferred away by a heat exchanger and can be used for heating. For this to function, the sorbent must be applied to the surface of the heat exchanger in such a way that the coolant evaporates continuously until the sorbent is saturated. Once the maximum adsorption capacity is reached, driving heat is used to drive off the stored coolant and liquefy it. The heat of condensation released in the process can also be used for heating.

To capitalize on the full potential of MOFs, it is important not only for water vapor to have easy access to the inner surfaces and pore space of the material but also for heat transfer away from the material to be effective. To aid the process, experts at Fraunhofer ISE have developed a new coating technique, for which they applied for a patent. This technique allows the new sorbents to be applied to equipment such as heat exchangers without obstructing heat and mass transfer. The research is being funded by the German Federal Ministry for Economic Affairs and Energy.

Heat from storage

Industrial facilities, power stations and biogas plants all make use of processes in which heat is essentially a waste product. Currently, hardly any of this heat energy is put to use something that scientists at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart want to change. The researchers are working on developing and optimizing zeolite thermal storage systems.

Zeolites are crystalline minerals with a porous structure that adsorbs other substances such as water. Their internal surface area can be as much as 1000 square meters per gram. When the zeolite comes into contact with water vapor, it binds water molecules within its pores, releasing heat in the process. Drying out the material is a way to store heat; the energy this takes is released as heat as soon as water vapor is again adsorbed. Experts from Fraunhofer IGB are now developing technology to allow this heat storage technique to be used.

Thermochemical heat storage systems based on a combination of zeolites and water have the potential to amass up to 180 kilowatt hours of energy per cubic meter depending on the charging temperature and the application. To put this into perspective, traditional hot water energy storage systems normally have an energy density of less than 60 kilowatt hours per cubic meter. However, zeolite sorptive thermal storage devices are in this stage of development relatively expensive. "From an economic and technical standpoint, we currently see this technology being implemented in industry," says Mike Blicker, group manager, heat and sorption systems at Fraunhofer IGB.


'/>"/>
Contact: Simone Ringelstein
simone.ringelstein@ise.fraunhofer.de
49-761-458-85077
Fraunhofer-Gesellschaft
Source:Eurekalert  

Related biology news :

1. New research: Soluble corn fiber plays important role in gut health and calcium absorption
2. Zebrafish research shows how dietary fat regulates cholesterol absorption
3. DNA can be damaged by very low-energy radiation
4. Geoscientists to meet in Fayetteville to discuss triggered seismicity, karst & energy resources
5. LED lamps: Less energy, more light
6. Story Tips from the Department of Energys Oak Ridge National Laboratory, March 2014
7. Elsevier and Energy Institute work together to publish Journal of the Energy Institute
8. Plants convert energy at lightning speed
9. Sustainable use of energy wood resources shows potential in North-West Russia
10. UK failing to harness its bioenergy potential
11. Stanford scientist to unveil 50-state plan to transform US to renewable energy
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Sorption energy storage and conversion for cooling and heating
(Date:12/20/2016)... -- The rising popularity of mobility services such ... significant interest in keyless access systems. Following the ... (BLE), biometrics and near-field communication (NFC) are poised ... technologies in the automotive industry. This evolution from ... opens the market to specialist companies such as ...
(Date:12/16/2016)... Dec. 16, 2016   IdentyTechSolutions America LLC ... products and solutions and a cutting-edge manufacturer of ... it is offering seamless, integrated solutions that comprise ... products. The solutions provide IdentyTech,s customers with combined ... facilities from crime and theft. "We ...
(Date:12/15/2016)... VANCOUVER, Canada and BADEN-BADEN, Germany ... Solutions, a leading global financial services provider, today announced an ... in passive behavioural biometrics, to join forces. The partnership will ... fraud mitigation strategies in compliance with local data protection regulation. ... In ...
Breaking Biology News(10 mins):
(Date:1/12/2017)... ... 12, 2017 , ... MEXICO’S FIRST SPINAL ... announces the successful outcome of the first lumbar fusion procedure in Mexico ... Inc.) has partnered with Mexico-based medical product company BioMedical Technologies to bring ...
(Date:1/12/2017)... , January 12, 2017 The ... world,s biggest facility for producing mycorrhizae. The Centre for ... tapping potential of mycorrhizae and developed a technology that ... ... The TERI facility has a ...
(Date:1/11/2017)... ... January 11, 2017 , ... Phase 1 clinical ... promise of the investigational anti-cancer agent tucatinib (formerly ONT-380) against HER2+ breast cancer. ... Twenty-seven percent of these heavily pretreated patients saw clinical benefit from the drug, ...
(Date:1/11/2017)... ... January 11, 2017 , ... With sepsis ... systems more than $23.7 billion, healthcare systems are looking to provide better ... most common sepsis-causing pathogens are bacteria and the yeast pathogen Candida, which can ...
Breaking Biology Technology: