Navigation Links
Solving electron transfer
Date:7/2/2013

Electron transfer is a process by which an atom donates an electron to another atom. It is the foundation of all chemical reactions, and is of intense research because of the implications it has for chemistry and biology. When two molecules interact, electron transfer takes place in a few quadrillionths (10-15) of a second, or femtoseconds (fsec), meaning that studying this event requires very time-sensitive techniques like ultrafast spectroscopy. However, the transfer itself is often influenced by the solution in which the molecules are studied (e.g. water), and this must be taken into account when such experiments are designed. In a recent Nature Communications paper, EPFL scientists have visualized for the first time how electron transfer takes place in one of the most common solvents, water.

For over twenty years, scientists have been trying to understand how an electron departs from an atom or molecule, travels through space in a solvent, and finally connects to an acceptor atom or molecule. Until now, experimental efforts have not borne much fruit, mostly because of the extremely short time periods involved in electron transfer. The problem is further complicated when we consider that the molecules of the commonest reaction solvent, water, are polar, which means that they respond to electron movement by influencing it. Understanding the real-time impact of the solvent is crucial, because it directly affects the outcome and efficiency of electron-transfer chemical reactions.

Majed Chergui's group at EPFL's Laboratory of Ultrafast Spectroscopy (LSU) employed a world-unique setup in their lab to observe the evolution of electron movement with unprecedented time-resolution. The scientists excited iodide in water with ultraviolet light, causing the ejection of an electron from the iodine atom. Using a technique called ultrafast fluorescence spectroscopy they observed the departure of the electron over different times between 60 fsec and 450 fsec. Previous research has always been limited between 200 fsec 300 fsec because once the electron exits, other processes take place that shade the longer periods of time and shorter timepoints have been inaccessible.

The experiment showed that the departure of the electron depends very much on the configuration of the solvent cage around the iodide. In chemistry, a 'solvent cage' refers to the way a solvent's molecules configure around an atom or molecule and 'try to hold it in place'. What the EPFL researchers found was that the polarized water molecules held the excited electron in place for a time, causing some structural re-arrangement of the solvent (water) in the process, while the driving force for electron ejection into the solvent is being reduced. Ultimately, the solvent cage does not prevent electrons from departing, but it slows down their departure stretching their residence time around iodine up to 450 fsec.

The breakthrough study shows how strongly the configuration and re-arrangement of the solvent affects electron departure. "It's not enough to consider only the donor and acceptor of the electron now you have to consider the solvent in between", says Majed Chergui. "If you are thinking about driving molecules by light into electron transfer processes, this is in a way telling the community 'watch out, don't neglect the solvent it is a key partner in the game, and the re-arrangement of the solvent is going to determine how efficient your reaction will be.'"


'/>"/>

Contact: Nik Papageorgiou
n.papageorgiou@epfl.ch
41-216-933-2105
Ecole Polytechnique Fdrale de Lausanne
Source:Eurekalert

Related biology news :

1. Are methane hydrates dissolving?
2. Solving the stink from sewers
3. Solving stem cell mysteries
4. Solving puzzles without a picture
5. Researchers analyse rock dissolving method of geoengineering
6. The electronic nose knows when your cantaloupe is ripe
7. CDS Monarch Deploys DigitalPersona Strong Authentication Solutions for Secure Access to Electronic Medical Records
8. Micross Components Recognized as Teledyne Electronic Manufacturing Services Manufacturer of the Year
9. Physicists explore properties of electrons in revolutionary material
10. Electronic nose prototype developed
11. Merging the biological and the electronic
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/28/2016)... First quarter 2016:   , Revenues amounted to ... of 2015 The gross margin was 49% (27) ... operating margin was 40% (-13) Earnings per share rose ... was SEK 249.9 M (21.2) , Outlook   ... The operating margin for 2016 is estimated to exceed ...
(Date:4/26/2016)... , April 27, 2016 ... "Global Multi-modal Biometrics Market 2016-2020"  report to their ... , The analysts forecast the global ... of 15.49% during the period 2016-2020.  ... of sectors such as the healthcare, BFSI, transportation, ...
(Date:4/15/2016)... 2016  A new partnership announced today will ... decisions in a fraction of the time it ... high-value life insurance policies to consumers without requiring ... Force Diagnostics, rapid testing (A1C, Cotinine and HIV) ... pressure, weight, pulse, BMI, and activity data) available ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... NEW YORK , June, 23, 2016  The ... students to envision new ways to harness living systems ... of Modern Art (MoMA) in New York ... more than 130 participating students, showcased projects at MoMA,s ... included Paola Antonelli , MoMA,s senior curator of ...
(Date:6/23/2016)... ... , ... In a new case report published today in STEM CELLS Translational ... lymphedema after being treated for breast cancer benefitted from an injection of stem cells ... this debilitating, frequent side effect of cancer treatment. , Lymphedema refers to ...
(Date:6/23/2016)... , June 23, 2016 On ... session at 4,833.32, down 0.22%; the Dow Jones Industrial Average ... 500 closed at 2,085.45, down 0.17%. Stock-Callers.com has initiated coverage ... INFI ), Nektar Therapeutics (NASDAQ: NKTR ), Aralez ... Inc. (NASDAQ: BIND ). Learn more about these ...
(Date:6/23/2016)... -- Amgen (NASDAQ: AMGN ) today announced a ... sciences incubator to accelerate the development of new therapies ... QB3@953 was created to help high-potential life science and ... stage organizations - access to laboratory infrastructure. ... "Amgen Golden Ticket" awards, providing each winner with one ...
Breaking Biology Technology: