Navigation Links
Solving DNA puzzles is overwhelming computer systems, researchers warn
Date:7/15/2013

Imagine millions of jigsaw puzzle pieces scattered across a football field, with too few people and too little time available to assemble the picture.

Scientists in the new but fast-growing field of computational genomics are facing a similar dilemma. In recent decades, these researchers have begun to assemble the chemical blueprints of the DNA found in humans, animals, plants and microbes, unlocking a door that will likely lead to better healthcare and greatly expanded life-science knowledge. But a major obstacle now threatens the speedy movement of DNA's secrets into research labs, two scholars in the field are warning.

This logjam has occurred, the researchers say, because the flood of unassembled genetic data is being produced much faster than current computers can turn it into useful information. That's the premise of a new article, co-written by a Johns Hopkins bioinformatics expert and published in the July 2013 issue of IEEE Spectrum. The piece, titled "DNA and the Data Deluge," was co-authored by Michael C. Schatz, an assistant professor of quantitative biology at Cold Spring Harbor Laboratory, in New York state; and Ben Langmead, an assistant professor of computer science in Johns Hopkins' Whiting School of Engineering.

In their article, the authors trace the rapidly increasing speed and declining cost of machines called DNA sequencers, which chop extremely long strands of biochemical components into more manageable small segments. But, the authors point out, these sequencers do not yield important biological information that researchers "can read like a book."

Instead, the article says, the sequencing machines "generate something like an enormous stack of shredded newspapers, without any organization of the fragments. The stack is far too large to deal with manually, so the problem of sifting through all the fragments is delegated to computer programs."

In other words, the sequencers produce the genetic jigsaw pieces, and a computer is needed to assemble the picture. Therein lies the problem, Schatz and Langmead say: Improvements in computer programs have not kept pace with the enhancements and widespread use of the sequencers that are cranking out huge amounts of data. The result is, the puzzle cannot be pieced together in a timely manner.

"It's a problem that threatens to hold back this revolutionary technology," the authors say in their article. "Computing, not sequencing, is now the slower and more costly aspect of genomics research."

The authors then detail possible computing solutions that could help erase this digital bottleneck. In his own research at Johns Hopkins, co-author Langmead is working on some of these remedies.

"The battle is really taking place on two fronts," he said. "We need algorithms that are more clever at solving these data issues, and we need to harness more computing power."

An algorithm is a recipe or a series of steps -- such as searching through data or doing math calculations -- that a computer must complete to accomplish a task.

"With cleverer algorithms," Langmead said, "you can do more steps with a fixed amount of computing power and time -- and get more work done."

The Johns Hopkins researcher has also had extensive experience in the second digital battle zone: assembling more computing power. This can be accomplished by putting multiple computers to work on assembling the DNA jigsaw puzzle. The linked machines can be at a single location or at multiple sites connected over the Internet through cloud computing. For the latter option, Langmead said, scientists may be able to do their work more quickly by tapping into the huge computing centers run by companies such as Amazon and "renting" time on these systems.

Langmead said he and Schatz wrote the IEEE Spectrum article to call attention to a significant computing problem and to jumpstart efforts to address it. The magazine describes itself as the flagship publication of the IEEE, the world's largest professional technology association.

"We hope the people who read our article can contribute to some solutions and make the work of genomic scientist much easier," he said.


'/>"/>

Contact: Phil Sneiderman
prs@jhu.edu
443-287-9960
Johns Hopkins University
Source:Eurekalert

Related biology news :

1. Solving electron transfer
2. Researchers analyse rock dissolving method of geoengineering
3. Solving puzzles without a picture
4. Solving stem cell mysteries
5. Solving the stink from sewers
6. Are methane hydrates dissolving?
7. Daydreaming simulated by computer model
8. Computer modeling technique goes viral at Brandeis
9. Computer simulations yield clues to how cells interact with surroundings
10. Computer model may help athletes and soldiers avoid brain damage and concussions
11. Computer modeling reveals how surprisingly potent hepatitis C drug works
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/16/2016)...   EyeLock LLC , a market leader of ... an IoT Center of Excellence in Austin, ... of embedded iris biometric applications. EyeLock,s iris ... security with unmatched biometric accuracy, making it the most ... EyeLock,s platform uses video technology to deliver a fast ...
(Date:5/3/2016)... , May 3, 2016  Neurotechnology, a provider ... MegaMatcher Automated Biometric Identification System (ABIS) , ... multi-biometric projects. MegaMatcher ABIS can process multiple complex ... any combination of fingerprint, face or iris biometrics. ... SDK and MegaMatcher Accelerator , which ...
(Date:4/26/2016)... and LONDON , April ... part of EdgeVerve Systems, a product subsidiary of ... today announced a partnership to integrate the Onegini ...      (Logo: http://photos.prnewswire.com/prnh/20151104/283829LOGO ) ... their customers enhanced security to access and transact ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... June 22, 2016  Amgen (NASDAQ: AMGN ... QB3@953 life sciences incubator to accelerate the ... shared laboratory space at QB3@953 was created to help ... obstacle for many early stage organizations - access to ... sponsorship, Amgen launched two "Amgen Golden Ticket" awards, providing ...
(Date:6/22/2016)... , June 22, 2016 Research and ... Global Markets" report to their offering. ... billion in 2014 from $29.3 billion in 2013. The market is ... of 13.8% from 2015 to 2020, increasing from $50.6 billion in ... projected product forecasts during the forecast period (2015 to 2020) are ...
(Date:6/22/2016)... ... June 22, 2016 , ... Quantitative Radiology Solutions, ... and current participant in the Phase 1 Ventures program, is leveraging regional and ... Quantitative Radiology Solutions helps physicians make better treatment decisions by quantifying medical imaging ...
(Date:6/22/2016)... ... 22, 2016 , ... The Immigrant Journey Awards , ... to North Texas and the nation, recently held its annual luncheon program. ... civic and economic vitality of North Texas. Proceeds from the event are used ...
Breaking Biology Technology: