Navigation Links
Solar cells more efficient than photosynthesis -- for now
Date:5/12/2011

EAST LANSING, Mich. In a head-to-head battle of harvesting the sun's energy, solar cells beat plants, according to a new paper in Science. But scientists think they can even up the playing field, says researcher David Kramer at Michigan State University.

Plants are less efficient at capturing the energy in sunlight than solar cells mostly because they have too much evolutionary baggage. Plants have to power a living thing, whereas solar cells only have to send electricity down a wire. This is a big difference because if photosynthesis makes a mistake, it makes toxic byproducts that kill the organism. Photosynthesis has to be conservative to avoid killing the organisms it powers.

"This is critical since it's the process that powers all of life in our ecosystem," said Kramer, a Hannah Distinguished Professor of Photosynthesis and Bioenergetics. "The efficiency of photosynthesis, and our ability to improve it, is critical to whether the entire biofuels industry is viable."

While photosynthesis is less efficient on a pure energy basis, it has the advantage of producing high-energy liquid fuels. (It also makes all of our food, and is thus essential for life). The paper summarizes several specific approaches to improving photosynthesis, some likely achievable in the short term, some more involved.

In truth, the competition really isn't fair unless the term "efficiency" is first defined. At a bare minimum it isn't fair to compare plants that package the sun's energy in handy little stored-fuel vessels (carbon-based molecules) to solar cells that just take the first step of converting the sun's energy to jazzed-up electrons. Fairer would be to compare plants to solar cell arrays that also store energy in chemical bonds.

The point of the comparison is not to make us throw plants on the compost pile, the researchers said. For one, efficiency is only one consideration among many in the choice among energy technologies. More important are life-cycle costs, the capital cost and valuation of the environmental impact of a product from its creation to its destruction.

Still the comparison is useful because it's leading the exploration of why plants are so inefficient and what can be done to improve their efficiency. Genetic engineering and the more aggressive techniques of synthetic biology the marriage of biology and engineering to design and construct systems and metabolic pathways not found in nature could speed things up considerably.

The experts suggested, for example, replacing one of the two photosystems in plants that handle the light-dependent reactions with a photosystem from a species of cyanobacteria. The photosystems in most plants compete for the same piece of the solar spectrum, cutting the energy efficiency nearly in half. But some cyanobacteria absorb light from an entirely different part of the spectrum. Basically, it would be the biological equivalent of a tandem solar cell, which is very efficient.


'/>"/>

Contact: Layne Cameron
layne.cameron@ur.msu.edu
517-353-8819
Michigan State University
Source:Eurekalert

Related biology news :

1. NRELs multi-junction solar cells teach scientists how to turn plants into powerhouses
2. MIT researchers use virus to improve solar-cell efficiency
3. Toward a more efficient use of solar energy
4. Switching to solar
5. Toward a green grid for delivering solar and wind-based electricity
6. UMD Solar Decathlon team unveils WaterShed
7. Size matters: Smaller particles could make solar panels more efficient
8. Neutron analysis yields insight into bacteria for solar energy
9. Solar greenhouses: Chinas winning solution to global energy crisis
10. Solar power systems could lighten the load for British soldiers
11. Floating solar panels
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... , Apr. 11, 2017 Research and Markets ... 2017-2021" report to their offering. ... The global eye tracking market to grow at a CAGR ... Global Eye Tracking Market 2017-2021, has been prepared based on an ... the market landscape and its growth prospects over the coming years. ...
(Date:4/6/2017)... LONDON , April 6, 2017 ... Control, RFID, ANPR, Document Readers, by End-Use (Transportation & ... Energy Facility, Oil, Gas & Fossil Generation Facility, Nuclear ... Healthcare, Educational, Other) Are you looking for ... Authentication sector? ...
(Date:4/5/2017)... April 4, 2017 KEY FINDINGS ... expand at a CAGR of 25.76% during the forecast ... the primary factor for the growth of the stem ... https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global stem cell ... application, and geography. The stem cell market of the ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... , ... October 11, 2017 , ... ... President Andi Purple announced Dr. Suneel I. Sheikh, the co-founder, CEO and ... Labs ), Inc. has been selected for membership in ARCS Alumni Hall ...
(Date:10/11/2017)... ... October 11, 2017 , ... Proscia Inc ... hosting a Webinar titled, “Pathology is going digital. Is your lab ready?” with ... adoption best practices and how Proscia improves lab economics and realizes an increase ...
(Date:10/11/2017)... TX (PRWEB) , ... October 11, 2017 , ... ... August compared the implantation and pregnancy rates in frozen and fresh in ... contribution of progesterone and maternal age to IVF success. , After comparing the ...
(Date:10/10/2017)... ... 10, 2017 , ... For the second time in three ... Mentoring Award. Representatives of the FirstHand program travelled to Washington, D.C. Tuesday, October ... US2020’s mission is to change the trajectory of STEM education in America by ...
Breaking Biology Technology: