Navigation Links
Soil-borne pathogens drive tree diversity in forests, study shows
Date:6/25/2010

MILWAUKEE What determines plant diversity in a forest? It's a question even Charles Darwin wanted to unravel. But most research into forest diversity demonstrates only patterns of species survival and abundance rather than the reason for them until now.

A team of researchers led by biologists at the University of WisconsinMilwaukee (UWM) has shown that soil-borne pathogens are one important mechanism that can maintain species diversity and explain patterns of tree abundance in a forest.

The paper, "Negative plant-soil feedbacks predict tree-species relative abundance in a tropical forest," is published today in the journal Nature. The lead authors are Scott Mangan, a UWM postdoctoral research associate, and Stefan Schnitzer, UWM associate professor of biological sciences. Other authors include Edward A. Herre and Evelyn I. Sanchez of the Smithsonian Tropical Research Institute, Keenan M.L. Mack and James D. Bever of Indiana University, and Mariana C. Valencia of the University of IllinoisChicago.

In a self-limiting process called "negative feedback," scientists have observed that the farther from the parent tree a seed falls, the better it fares. Negative feedbacks occur when juveniles growing near an adult of the same species are particularly vulnerable to the detrimental effects of enemies that accumulate in the soil near the adult tree.

In both greenhouse and field experiments, the researchers found clues that tree species differ in their susceptibilities to enemies found in the soil, such as viruses, bacteria and fungi.

The research reinforces the conclusion that certain tree species are abundant in forests because they are less susceptible to pathogens in the soil than rarer tree species, says Mangan. "Strong negative feedbacks with soil-borne pathogens prevent rare tree species from becoming abundant."

The study has shown that more abundant tree species exhibit the weakest negative feedbacks the opposite of what the team expected, says Schnitzer. And when the team scaled up the empirical data using simulation models they created, they found the same relationship between negative feedbacks and abundance.

The next step for the research team is to isolate the exact pathogens that are so powerful against each species. Using a genomics approach, they will examine how soil varies in the plant populations.

Schnitzer emphasizes that the work describes what could be one of many mechanisms that determine species abundance in forests. "We don't claim that because we found evidence of one mechanism, that there aren't others that also could be at work, but we know that this one is probably very important."


'/>"/>

Contact: Stefan Schnitzer
schnite@uwm.edu
01-150-765-057-510
University of Wisconsin - Milwaukee
Source:Eurekalert

Related biology news :

1. Neiker-Tecnalia underlines the need to maintain programs for monitoring pathogens in wildlife
2. Genomes of citrus canker pathogens decoded
3. New technology enables machines to detect microscopic pathogens in water
4. Barrier in mosquito midgut protects invading pathogens
5. Smithsonian scientists find the frog legs trade may facilitate spread of pathogens
6. Daily bathroom showers may deliver face full of pathogens, says CU-Boulder study
7. Designing probiotics that ambush gut pathogens
8. Flexible neck in cell-receptor DC-SIGN targets more pathogens
9. UGA licenses invention that kills food-borne pathogens in minutes
10. Rapid test for pathogens developed by K-State researchers
11. New UGA invention effectively kills foodborne pathogens in minutes
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/19/2016)... , UAE, April 20, 2016 ... be implemented as a compact web-based "all-in-one" system solution ... the biometric fingerprint reader or the door interface with ... of modern access control systems. The minimal dimensions of ... ID readers into the building installations offer considerable freedom ...
(Date:4/14/2016)... 14, 2016 BioCatch ™, ... today announced the appointment of Eyal Goldwerger ... Goldwerger,s leadership appointment comes at a time ... the deployment of its platform at several of the ... which discerns unique cognitive and physiological factors, is a ...
(Date:3/31/2016)... March 31, 2016  Genomics firm Nabsys has completed ... Barrett Bready , M.D., who returned to the ... original technical leadership team, including Chief Technology Officer, ... Development, Steve Nurnberg and Vice President of Software and ... company. Dr. Bready served as CEO of ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... Prostate Cancer Foundation (PCF) is pleased to announce 24 new Young ... cancer. Members of the Class of 2016 were selected from a pool of ... More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... , ... June 23, 2016 , ... In a new ... in Denmark detail how a patient who developed lymphedema after being treated for breast ... results could change the paradigm for dealing with this debilitating, frequent side effect of ...
(Date:6/23/2016)... ... 23, 2016 , ... ClinCapture, the only free validated electronic ... showcase its product’s latest features from June 26 to June 30, 2016 for ... Disrupting Clinical Trials in The Cloud during the conference. DIA (Drug Information ...
Breaking Biology Technology: