Navigation Links
Smart orthopedic implants and self-fitting tissue scaffolding created by UMMS researchers

WORCESTER, Mass. Orthopedic surgeons are often hamstrung by less-than-ideal grafting material when performing surgeries for complex bone injuries resulting from trauma, aging or cancer. Conventional synthetic bone grafts are typically made of stiff polymers or brittle ceramics, and cannot readily conform to the complex and irregular shapes that often result from injury; in addition, they often require metallic fixation devices that require open surgeries to insert and remove. Ideally, a scaffolding graft would conform to complex shapes of an injury site, provide weight-bearing support, require less invasive surgical delivery, and ultimately disappear when no longer needed.

Using a nanoparticle core, Jie Song, PhD, assistant professor of orthopedics & physical rehabilitation and cell biology at the University of Massachusetts Medical School, and postdoctoral fellow Jianwen Xu, have fashioned a new type of tissue and bone scaffolding polymer that addresses a number of these long-standing limitations. Research published in the online Early Edition of Proceedings of the National Academy of Sciences, describes the development of a class of heat-activated smart materials that combine tissue-like properties and strength that are clinically safe to deploy and able to integrate with surrounding tissue.

The key feature of the new polymer is its heat-activated malleability and shape memory. Using CT scans and MRI images of the injury site, Song envisions physicians creating a polymer mold of the scaffolding needed to stabilize a skeletal injury site, in the lab, prior to surgery. Heat activated at a safe 50C, the smart polymer could then be reshaped to a more compressed form suitable for insertion in the body through a small, minimally invasive incision. Once at the injury site, the idea is to then thermally re-activate the polymer to cause it to revert to its original, pre-molded shape in seconds, according to Song.

In addition to providing mechanical stabilization to the skeletal structure, because the biodegradable material is similar to those used in dissolvable sutures, it can be safely reabsorbed by the body as it breaks down over time. Therefore, there is no need for a second surgery to remove the implant. Additionally, as the scaffolding degrades, the polymer provides a porous structure that promotes tissue growth and integration. At the same time, the polymer has the ability to deliver therapeutics to accelerate new bone growth and integration.

"Strong and resorbable smart implants could have paradigm-changing impact on a number of surgical interventions that currently rely on the use of more invasive and less effective metallic cages, fixators and stents," said Song. "From spinal fusion to alleviate chronic lower back pain, vertebroplasty for treating vertebral fractures to angioplasty for widening narrowed or obstructed blood vessels, there are tremendous clinical applications for smart polymers."

Song and colleagues are testing the safety and efficacy of the material in animal models, which they hope will pave the way for future clinical trials.


Contact: Jim Fessenden
University of Massachusetts Medical School

Related biology news :

1. Like little golden assassins, smart nanoparticles identify, target and kill cancer cells
2. Smart coating opens door to safer hip, knee and dental implants
3. Vidient SmartCatch Protecting Exit Lanes at Major UK Airport
4. NOAA deploys new smart buoy off Annapolis
5. WCC Smart Search & Match and Priv-ID Announce Global Collaboration
6. NSF Emerging Frontiers program supports development of smart materials based on study of fish
7. Spread your sperm the smart way
8. Cancer: The cost of being smarter than chimps?
9. Ultrasound imaging now possible with a smartphone
10. Intruder alert: Tel Aviv Universitys Smart Dew will find you!
11. Reducing CO2 through technology and smart growth
Post Your Comments:
(Date:6/20/2016)... , June 20, 2016 Securus Technologies, ... technology solutions for public safety, investigation, corrections and ... prisons involved, it has secured the final acceptance ... facilities for Managed Access Systems (MAS) installed. Furthermore, ... facilities to be installed by October, 2016. MAS ...
(Date:6/9/2016)... 9, 2016 Paris Police ... video security solution to ensure the safety of people and ... during the major tournament Teleste, an international technology ... services, announced today that its video security solution will be ... back up public safety across the country. The system roll-out ...
(Date:6/2/2016)... NEW YORK , June 2, 2016   The ... (Weather), is announcing Watson Ads, an industry-first capability in which ... advertising, by being able to ask questions via voice or ... Marketers have long ... with the consumer, that can be personal, relevant and valuable; ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... /PRNewswire/ - FACIT has announced the creation of ... company, Propellon Therapeutics Inc. ("Propellon" or "the Company"), ... portfolio of first-in-class WDR5 inhibitors for the treatment ... represent an exciting class of therapies, possessing the ... cancer patients. Substantial advances have been achieved with ...
(Date:6/23/2016)... 2016 Houston Methodist Willowbrook Hospital has ... Association to serve as their official health care ... Willowbrook will provide sponsorship support, athletic training services, ... coaches, volunteers, athletes and families. "We ... Association and to bring Houston Methodist quality services ...
(Date:6/23/2016)... Prostate Cancer Foundation (PCF) is pleased to announce 24 new Young ... cancer. Members of the Class of 2016 were selected from a pool of ... More About the Class of 2016 PCF Young Investigators ... ... ...
(Date:6/23/2016)... , June 23, 2016   EpiBiome , ... secured $1 million in debt financing from Silicon Valley ... up automation and to advance its drug development efforts, ... new facility. "SVB has been an incredible ... the services a traditional bank would provide," said Dr. ...
Breaking Biology Technology: