Navigation Links
Small mechanical forces have big impact on embryonic stem cells
Date:10/18/2009

CHAMPAIGN, Ill. Applying a small mechanical force to embryonic stem cells could be a new way of coaxing them into a specific direction of differentiation, researchers at the University of Illinois report. Applications for force-directed cell differentiation include therapeutic cloning and regenerative medicine.

"Our results suggest that small forces may indeed play critical roles in inducing strong biological responses in embryonic stem cells, and in shaping embryos during their early development," said Ning Wang, a professor of mechanical science and engineering at the U. of I., and corresponding author of a paper accepted for publication in Nature Materials and posted on the journal's Web site.

Cell softness is an intrinsic property of embryonic stem cells and dictates how a cell responds to forces in its physical microenvironment. Those responses include how strongly the cell attaches to a surface, how far the cell spreads on a surface, and, most surprisingly, whether specific genes are expressed.

To study cellular sensitivity to force, Wang and his collaborators first attached a magnetic bead, 4 microns in diameter, to the surface of a living embryonic stem cell. Then they applied a tiny oscillating magnetic field, which moved the bead up and down. By precisely measuring the magnetic field and the distance the bead traveled, the effect of the mechanical force and how soft the cells are could be determined.

The cyclic nature of the mechanical force is very important, Wang said, as it simulates natural forces within a living cell, such as the cyclic movement of the motor protein myosin.

The researchers found that mouse embryonic stem cells were softer and much more sensitive to localized cyclic forces than their more advanced, differentiated counterparts.

"As stem cells differentiate, they become stiffer," said Wang, who is affiliated with the university's Beckman Institute, Micro and Nanotechnology Laboratory, and department of bioengineering. "The stiffer the stem cell, the less it spreads under stress."

The researchers obtained the same results when they applied cyclic forces to stiff human muscle cells. They did not experiment with human embryonic stem cells.

To study some of the long-term effects of localized mechanical forces on the behavior of mouse embryonic stem cells, the researchers utilized the expression of an enhanced green fluorescent gene. Cells expressing this gene glow fluorescent green when exposed to blue light.

As the mechanical force was applied in the researchers' experiments, the green fluorescence in cells with magnetic beads faded, indicating reduced gene expression. Control cells (without beads) a few microns away continued to glow.

"The softness of mouse embryonic stem cells makes them very sensitive to localized cyclic forces," Wang said. "If our findings can be extended to early animal embryos, they could provide a new way of locally differentiating a single cell of early lineage, while leaving nearby cells alone."


'/>"/>

Contact: James E. Kloeppel
kloeppel@illinois.edu
217-244-1073
University of Illinois at Urbana-Champaign
Source:Eurekalert

Related biology news :

1. Fate Therapeutics announces creation of small molecule platform for commercial-scale reprogramming
2. Conservation targets too small to stop extinction
3. Small molecule inhibits pathology associated with myotonic dystrophy type 1
4. Small rodents encourage the formation of scrubland in Spain
5. Harvard research team receives $10M NSF grant to develop small-scale mobile robotic devices
6. After dinosaurs, mammals rise but their genomes get smaller
7. Smaller than expected, but severe, dead zone in Gulf of Mexico
8. Smaller plants punch above their weight in the forest, say Queens biologists
9. New research shows dinosaurs may have been smaller than we thought
10. Small molecules mimic natural gene regulators
11. Small molecules might block mutant protein production in Huntingtons disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/24/2016)... May 24, 2016 Ampronix facilitates superior patient care by providing unparalleled technology ... LCD display is the latest premium product recently added to the range of products ... ... ... 3d Imaging- LCD Medical Display- Ampronix News ...
(Date:5/9/2016)... DUBAI , UAE, May 9, 2016 ... choice when it comes to expanding freedom for high ... Even in today,s globally connected world, there ... online conferencing system could ever duplicate sealing your deal ... are obtaining second passports by taking advantage of citizenship ...
(Date:4/26/2016)... LONDON , April 26, 2016 /PRNewswire/ ... Systems, a product subsidiary of Infosys (NYSE: ... partnership to integrate the Onegini mobile security platform ... http://photos.prnewswire.com/prnh/20151104/283829LOGO ) The integration ... security to access and transact across channels. Using ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... ... June 27, 2016 , ... Parallel 6 , ... announced today the Clinical Reach Virtual Patient Encounter CONSULT module which enables ... the physician and clinical trial team. , Using the CONSULT module, patients and physicians ...
(Date:6/27/2016)...   Ginkgo Bioworks , a leading organism ... today awarded as one of the World Economic ... most innovative companies. Ginkgo Bioworks is engineering biology ... world in the nutrition, health and consumer goods ... customers including Fortune 500 companies to design microbes ...
(Date:6/24/2016)... ... June 24, 2016 , ... Researchers at the Universita ... miRNAs in people with peritoneal or pleural mesothelioma. Their findings are the subject of ... now. , Diagnostic biomarkers are signposts in the blood, lung fluid or tissue ...
(Date:6/23/2016)... 2016 /PRNewswire/ - FACIT has announced the creation ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or "the ... a portfolio of first-in-class WDR5 inhibitors for the ... WDR5 represent an exciting class of therapies, possessing ... for cancer patients. Substantial advances have been achieved ...
Breaking Biology Technology: