Navigation Links
Small mechanical forces have big impact on embryonic stem cells
Date:10/18/2009

CHAMPAIGN, Ill. Applying a small mechanical force to embryonic stem cells could be a new way of coaxing them into a specific direction of differentiation, researchers at the University of Illinois report. Applications for force-directed cell differentiation include therapeutic cloning and regenerative medicine.

"Our results suggest that small forces may indeed play critical roles in inducing strong biological responses in embryonic stem cells, and in shaping embryos during their early development," said Ning Wang, a professor of mechanical science and engineering at the U. of I., and corresponding author of a paper accepted for publication in Nature Materials and posted on the journal's Web site.

Cell softness is an intrinsic property of embryonic stem cells and dictates how a cell responds to forces in its physical microenvironment. Those responses include how strongly the cell attaches to a surface, how far the cell spreads on a surface, and, most surprisingly, whether specific genes are expressed.

To study cellular sensitivity to force, Wang and his collaborators first attached a magnetic bead, 4 microns in diameter, to the surface of a living embryonic stem cell. Then they applied a tiny oscillating magnetic field, which moved the bead up and down. By precisely measuring the magnetic field and the distance the bead traveled, the effect of the mechanical force and how soft the cells are could be determined.

The cyclic nature of the mechanical force is very important, Wang said, as it simulates natural forces within a living cell, such as the cyclic movement of the motor protein myosin.

The researchers found that mouse embryonic stem cells were softer and much more sensitive to localized cyclic forces than their more advanced, differentiated counterparts.

"As stem cells differentiate, they become stiffer," said Wang, who is affiliated with the university's Beckman Institute, Micro and Nanotechnology Laboratory, and department of bioengineering. "The stiffer the stem cell, the less it spreads under stress."

The researchers obtained the same results when they applied cyclic forces to stiff human muscle cells. They did not experiment with human embryonic stem cells.

To study some of the long-term effects of localized mechanical forces on the behavior of mouse embryonic stem cells, the researchers utilized the expression of an enhanced green fluorescent gene. Cells expressing this gene glow fluorescent green when exposed to blue light.

As the mechanical force was applied in the researchers' experiments, the green fluorescence in cells with magnetic beads faded, indicating reduced gene expression. Control cells (without beads) a few microns away continued to glow.

"The softness of mouse embryonic stem cells makes them very sensitive to localized cyclic forces," Wang said. "If our findings can be extended to early animal embryos, they could provide a new way of locally differentiating a single cell of early lineage, while leaving nearby cells alone."


'/>"/>

Contact: James E. Kloeppel
kloeppel@illinois.edu
217-244-1073
University of Illinois at Urbana-Champaign
Source:Eurekalert

Related biology news :

1. Fate Therapeutics announces creation of small molecule platform for commercial-scale reprogramming
2. Conservation targets too small to stop extinction
3. Small molecule inhibits pathology associated with myotonic dystrophy type 1
4. Small rodents encourage the formation of scrubland in Spain
5. Harvard research team receives $10M NSF grant to develop small-scale mobile robotic devices
6. After dinosaurs, mammals rise but their genomes get smaller
7. Smaller than expected, but severe, dead zone in Gulf of Mexico
8. Smaller plants punch above their weight in the forest, say Queens biologists
9. New research shows dinosaurs may have been smaller than we thought
10. Small molecules mimic natural gene regulators
11. Small molecules might block mutant protein production in Huntingtons disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/11/2017)... MELBOURNE, Florida , April 11, 2017 ... "Company"), a security technology company, announces the appointment of independent ... John Bendheim to its Board of Directors, furthering the ... ... behalf of NXT-ID, we look forward to their guidance and ...
(Date:4/5/2017)... , April 5, 2017  The Allen Institute ... Allen Cell Explorer: a one-of-a-kind portal and dynamic digital ... 3D imaging data, the first application of deep learning ... human stem cell lines and a growing suite of ... platform for these and future publicly available resources created ...
(Date:4/5/2017)... , April 4, 2017 KEY FINDINGS ... anticipated to expand at a CAGR of 25.76% during ... diseases is the primary factor for the growth of ... report: https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global ... product, technology, application, and geography. The stem cell market ...
Breaking Biology News(10 mins):
(Date:5/26/2017)... ... May 25, 2017 , ... LabRoots , the leading provider ... from around the world, is announcing a new textbook scholarship, the second scholarship in ... graduate students, 17 years or older, pursuing a degree in one of the life ...
(Date:5/24/2017)... WASHINGTON, DC, USA (PRWEB) , ... May 23, 2017 , ... ... the economy as well as an enabler of life-saving medical and other vital technologies ... and photonics . They joined others in the scientific community today in responding to ...
(Date:5/23/2017)... ... May 23, 2017 , ... A recent survey conducted by ... and difficult to control weed in 12 categories of broadleaf crops, fruits and vegetables, ... scientists across the U.S. and Canada participated in the 2016 survey, the second conducted ...
(Date:5/23/2017)... ... May 22, 2017 , ... A new Technology ... Diego, California, this August will feature high-level speakers on quantum devices, graphene electronic ... Optics and Photonics, the largest multidisciplinary optical sciences meeting in North America, will ...
Breaking Biology Technology: