Navigation Links
Small mechanical forces have big impact on embryonic stem cells
Date:10/18/2009

CHAMPAIGN, Ill. Applying a small mechanical force to embryonic stem cells could be a new way of coaxing them into a specific direction of differentiation, researchers at the University of Illinois report. Applications for force-directed cell differentiation include therapeutic cloning and regenerative medicine.

"Our results suggest that small forces may indeed play critical roles in inducing strong biological responses in embryonic stem cells, and in shaping embryos during their early development," said Ning Wang, a professor of mechanical science and engineering at the U. of I., and corresponding author of a paper accepted for publication in Nature Materials and posted on the journal's Web site.

Cell softness is an intrinsic property of embryonic stem cells and dictates how a cell responds to forces in its physical microenvironment. Those responses include how strongly the cell attaches to a surface, how far the cell spreads on a surface, and, most surprisingly, whether specific genes are expressed.

To study cellular sensitivity to force, Wang and his collaborators first attached a magnetic bead, 4 microns in diameter, to the surface of a living embryonic stem cell. Then they applied a tiny oscillating magnetic field, which moved the bead up and down. By precisely measuring the magnetic field and the distance the bead traveled, the effect of the mechanical force and how soft the cells are could be determined.

The cyclic nature of the mechanical force is very important, Wang said, as it simulates natural forces within a living cell, such as the cyclic movement of the motor protein myosin.

The researchers found that mouse embryonic stem cells were softer and much more sensitive to localized cyclic forces than their more advanced, differentiated counterparts.

"As stem cells differentiate, they become stiffer," said Wang, who is affiliated with the university's Beckman Institute, Micro and Nanotechnology Laboratory, and department of bioengineering. "The stiffer the stem cell, the less it spreads under stress."

The researchers obtained the same results when they applied cyclic forces to stiff human muscle cells. They did not experiment with human embryonic stem cells.

To study some of the long-term effects of localized mechanical forces on the behavior of mouse embryonic stem cells, the researchers utilized the expression of an enhanced green fluorescent gene. Cells expressing this gene glow fluorescent green when exposed to blue light.

As the mechanical force was applied in the researchers' experiments, the green fluorescence in cells with magnetic beads faded, indicating reduced gene expression. Control cells (without beads) a few microns away continued to glow.

"The softness of mouse embryonic stem cells makes them very sensitive to localized cyclic forces," Wang said. "If our findings can be extended to early animal embryos, they could provide a new way of locally differentiating a single cell of early lineage, while leaving nearby cells alone."


'/>"/>

Contact: James E. Kloeppel
kloeppel@illinois.edu
217-244-1073
University of Illinois at Urbana-Champaign
Source:Eurekalert

Related biology news :

1. Fate Therapeutics announces creation of small molecule platform for commercial-scale reprogramming
2. Conservation targets too small to stop extinction
3. Small molecule inhibits pathology associated with myotonic dystrophy type 1
4. Small rodents encourage the formation of scrubland in Spain
5. Harvard research team receives $10M NSF grant to develop small-scale mobile robotic devices
6. After dinosaurs, mammals rise but their genomes get smaller
7. Smaller than expected, but severe, dead zone in Gulf of Mexico
8. Smaller plants punch above their weight in the forest, say Queens biologists
9. New research shows dinosaurs may have been smaller than we thought
10. Small molecules mimic natural gene regulators
11. Small molecules might block mutant protein production in Huntingtons disease
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/31/2017)... , Jan. 31, 2017  Spero Therapeutics, LLC, ... for the treatment of bacterial infections, today announced ... antibacterial candidates from Pro Bono Bio Ltd (PBB) ... of multi-drug resistant forms of Gram-negative bacteria.   The ... Infectives Ltd, a PBB group company. ...
(Date:1/26/2017)... -- Acuity Market Intelligence today released the 2017 "Ten ... characterizes 2017 as a "breakout" year for biometrics ... new understanding of the potential benefits these technologies ... are often perceived as threats to privacy and ... Acuity Market intelligence. "However, taken together these technologies ...
(Date:1/24/2017)... -- It sounds simple and harmless—an electronic sensor attached ... and alerts parents on their smart phones if, ... But pediatric experts argue that such devices may ... of medical benefits, especially to healthy babies. ... of healthy babies, promising peace of mind about ...
Breaking Biology News(10 mins):
(Date:2/16/2017)... Feb. 16, 2017  Rhythm, a biopharmaceutical ... deficiencies that result in life-threatening metabolic disorders, ... million mezzanine round of financing with existing ... Capital, New Enterprise Associates, Pfizer Venture Investments, ... healthcare investment fund. Rhythm will use the ...
(Date:2/16/2017)... Indiana (PRWEB) , ... February ... ... of Albany Molecular Research Inc. has further extended its industry leading Biochemistry ... This service offers state-of-the-art cGMP techniques and methods for the biochemical ...
(Date:2/15/2017)... Clara, CA (PRWEB) , ... February 15, 2017 , ... ... announced that Park SmartScan, a powerful AFM operating software that drastically boosts productivity with ... SmartScan completely automatizes all of the functions of setting up and taking the image ...
(Date:2/15/2017)... WASHINGTON , Feb. 15, 2017  NASA provider ... Services mission to the  International Space Station  no earlier ... of the launch will begin at 8:30 a.m. on ... SpaceX Dragon spacecraft will lift off on ... at NASA,s Kennedy Space Center ...
Breaking Biology Technology: