Navigation Links
Small RNA plays parallel roles in bacterial metabolism
Date:11/29/2007

They are often overlooked, and were once thought to be too small to contribute much to major cellular processes, but in recent years the study of small ribonucleic acids (sRNA) has gained momentum. Now a team from the University of Illinois has identified the unique metabolic activities of one of these bit players, a 200-nucleotide-long RNA molecule in bacteria called SgrS.

This molecule is one of about 80 known small RNAs common to many bacteria. It got its name for its role in sugar metabolism (SgrS is an acronym for sugar-related stress). When a bacterium such as Escherichia coli has taken up enough or too much glucose from its surroundings, SgrS helps stop the transport of glucose molecules across the cell membrane, said microbiology professor and principal investigator Carin Vanderpool.

In trying to tease out how SgrS performs this task, Vanderpool and technician Caryn Wadler discovered that the molecule performs dual roles, both of which inhibit the transport of glucose into the cell. One region of the RNA molecule binds to a messenger RNA to inhibit the production of new glucose transporters, while another region codes for a protein that seems to retard the activity of existing transporters.

The findings appear online this month in the Proceedings of the National Academy of Sciences.

The most novel thing about this discovery is that this molecule seems to be truly bi-functional in that the two functions it performs participate in the same stress response, Vanderpool said.

One other small RNA, a 500-nucleotide molecule that regulates virulence genes in Staphylococcus aureus bacteria, was previously found to encode a protein, Vanderpool said, but the activity of that protein did not participate in the regulation.

The two regions of the molecule were apparently engaged in unrelated tasks.

Some glucose is obviously good, since the bacteria use it to make essential cell molecules and to provide energy. However, excess glucose in bacterial cells interferes with vital functions, Vanderpool said, so the SgrS response is essential to bacterial survival. A deeper understanding of how bacteria defend themselves from metabolic stresses such as excess glucose could lead to important therapeutic innovations, she said.

Vanderpool hopes that more researchers will explore the multifunctional potential of these diminutive molecules.

Dont overlook them just because theyre short, she said.


'/>"/>

Contact: Diana Yates
diya@uiuc.edu
217-333-5802
University of Illinois at Urbana-Champaign  
Source:Eurekalert

Related biology news :

1. Social parasites of the smaller kind
2. Small animal imaging facility is big boon to research
3. Handbook of small grain insects available now
4. New molecular clock from LLNL and CDC indicates smallpox evolved earlier than believed
5. 2007 ozone hole smaller than usual
6. Cilia: small organelles, big decisions
7. Research shows loggerhead sea turtles threatened by small-scale fishing operations
8. Small-scale fishing in Mexico rivals industrial fisheries in accidental turtle deaths
9. Sweet potato shines as new promise for small enterprise and hunger relief in developing countries
10. Identification of a novel class of (not-so) small RNAs
11. Speed plays crucial role in breaking proteins H-bonds
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Small RNA plays parallel roles in bacterial metabolism
(Date:6/30/2017)... , June 30, 2017 Today, American ... and supplier of face and eye tracking software, ... Product provider program. "Artificial intelligence ... way to monitor a driver,s attentiveness levels while ... being able to detect fatigue and prevent potential ...
(Date:5/16/2017)... , May 16, 2017  Veratad Technologies, LLC ( ... online age and identity verification solutions, announced today they ... Conference 2017, May 15 thru May 17, 2017, in ... and International Trade Center. Identity impacts ... and in today,s quickly evolving digital world, defining identity ...
(Date:4/19/2017)... 2017 The global military biometrics ... marked by the presence of several large global players. ... five major players - 3M Cogent, NEC Corporation, M2SYS ... nearly 61% of the global military biometric market in ... global military biometrics market boast global presence, which has ...
Breaking Biology News(10 mins):
(Date:7/20/2017)... , ... July 20, 2017 , ... ... Fujimoto, Ph.D ., the Elihu Thomson Professor of Electrical Engineering and Computer Science ... Award winner. Presented annually, the award recognizes an individual who has made ...
(Date:7/20/2017)... TX (PRWEB) , ... July 20, 2017 , ... ... focused on health-related quality of life, today announced its full advisory board. The ... also announced the promotion of James Crooks, PhD, former VP of Engineering, to ...
(Date:7/20/2017)... and PLYMOUTH, Minn., July 20, 2017   ... a personalized genetic evaluations company, today announced that ... partnership investigating a genetic mutation implicated in KCNQ2 ... the partnership for a second case involving an ... the KCNQ2 Cure Alliance and Pairnomix entered into ...
(Date:7/18/2017)... , ... July 18, 2017 , ... ... accelerate pharmaceutical and biotherapeutics development, announces the launch of a new NTA biosensor ... chip enables researchers to study the kinetics of polyhistidine-tagged (His-tagged) molecules quickly and ...
Breaking Biology Technology: