Navigation Links
Slowing urban sprawl, adding forests curb floods and help rivers
Date:8/19/2010

WEST LAFAYETTE, Ind. - Controlling urban growth and increasing forested land are the most effective ways to decrease future water runoff and flooding, according to a Purdue University study.

Bryan Pijanowski, an associate professor of forestry and natural resources, used a model to simulate Michigan's Muskegon River watershed runoff rates from 1900 through the present and forecast them 30 years into the future. Several scenarios, including forest regrowth, urbanization, and buffers between development and streams, were analyzed to estimate their impact on rivers and streams.

"Changes in the land's surface feed back to runoff. Urban sprawl and impervious surfaces are the biggest culprits," Pijanowski said. "If you're able to control development, it is the most effective way to save our river ecosystem."

Pijanowski said urban areas in the United States would double in 20 years at the current rate. In the model predictions, doubling the urban area in the Muskegon River watershed would increase runoff by 1 1/2 times.

Excess runoff can have several consequences, including flooding, increases in agricultural nutrients and urban pollutants entering nearby water and affecting aquatic life, increases in water temperature in rivers and streams that can affect aquatic life, and changes in the apportionment of water to wetlands and groundwater.

Pijanowski's findings, published in the early online version of the journal Environmental Management, suggest that slowing the rate of urban sprawl would be the most effective way to reduce or control runoff. Adding forest near rivers and streams and requiring buffer zones between those waterways and development also could help.

Pijanowski used historical data - including census information, aerial photos and housing statistics - to build historical landscapes back to the early 1900s. That data was fed into the Land Transformation Model, developed at Purdue, to determine historical runoff rates. Predictions from the present through 2030 also were created using the model. Assumptions for those predictions were created by local governments, state agencies and non-governmental groups working around the Muskegon River based on their knowledge of development and other area trends.

The findings included some good news: Pijanowski found that the landscape in the Midwest has improved since rapid deforestation in the late 1800s and early 1900s, with the best balance of urban and forested land since then occurring in the 1960s.

Rebuilding efforts after the Great Chicago Fire of 1871 caused heavy deforestation. But the federal government reforested farmland that it took possession of in the Great Depression, leading to the balance observed in the 1960s.

"The past is the worst we'll ever see over a 140-year period. Even the worst-case scenarios show that the landscape won't be as bad as what we had in the 1890s and early 1900s," Pijanowski said. "The lesson here is that with time and care, these systems can be restored. Recovery is possible."

Pijanowski's future work will include examining the role landscape changes play in climate change and determining tipping points at which landscape changes impact rivers and streams.


'/>"/>

Contact: Brian Wallheimer
bwallhei@purdue.edu
765-496-2050
Purdue University
Source:Eurekalert

Related biology news :

1. Landscape-scale treatment promising for slowing beetle spread
2. Slowing evolution to stop drug resistance
3. Study highlights forest protected areas as a critical strategy for slowing climate change
4. Study: urban black bears live fast, die young
5. UC Riverside scientist to explore how vegetation affects urban heat islands
6. Networks of small habitat patches can preserve urban biodiversity
7. Urban trees enhance water infiltration
8. The physics of star-forming clouds and the urban environment
9. A win-win: U-pick pumpkin farms recycle urban leaves
10. New pollution radar developed to provide unprecedented picture of urban smog
11. Urban myth disproved: Fingerprints do not improve grip friction
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/14/2016)... 14, 2016 BioCatch ™, ... today announced the appointment of Eyal Goldwerger ... Goldwerger,s leadership appointment comes at a time ... the deployment of its platform at several of the ... which discerns unique cognitive and physiological factors, is a ...
(Date:3/31/2016)... 2016  Genomics firm Nabsys has completed a financial ... Bready , M.D., who returned to the company in ... leadership team, including Chief Technology Officer, John Oliver ... Nurnberg and Vice President of Software and Informatics, ... Dr. Bready served as CEO of Nabsys from ...
(Date:3/22/2016)... 2016 According to ... for Consumer Industry by Type (Image, Motion, Pressure, ... & IT, Entertainment, Home Appliances, & Wearable ... 2022", published by MarketsandMarkets, the market for ... USD 26.76 Billion by 2022, at a ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... 27, 2016  Liquid Biotech USA ... of a Sponsored Research Agreement with The University ... (CTCs) from cancer patients.  The funding will be ... correlate with clinical outcomes in cancer patients undergoing ... then be employed to support the design of ...
(Date:6/24/2016)... (PRWEB) , ... June 24, 2016 , ... While the ... such as the Cary 5000 and the 6000i models are higher end machines that ... the height of the spectrophotometer’s light beam from the bottom of the cuvette holder. ...
(Date:6/23/2016)... , June 23, 2016   Boston Biomedical ... novel compounds designed to target cancer stemness pathways, ... been granted Orphan Drug Designation from the U.S. ... of gastric cancer, including gastroesophageal junction (GEJ) cancer. ... designed to inhibit cancer stemness pathways by targeting ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... and Mold) microbial test has received AOAC Research Institute approval 061601. , “This ... introduced last year,” stated Bob Salter, Vice President of Regulatory and Industrial Affairs. ...
Breaking Biology Technology: