Navigation Links
Slice, stack, and roll: A new way to build collagen scaffolds
Date:12/27/2012

MEDFORD/SOMERVILLE, Mass. (December, 26 2012) Tufts University School of Engineering researchers have developed a novel method for fabricating collagen structures that maintains the collagen's natural strength and fiber structure, making it useful for a number of biomedical applications.

Collagen, the most abundant protein in the body, is widely used to build scaffolds for tissue engineering because it is biocompatible and biodegradable. Collagen is, however, hard to work with in its natural form because it is largely insoluble in water, and common processing techniques reduce its strength and disrupt its fibrous structure.

The Tufts engineers' new technique, called bioskiving, creates collagen structures from thin sheets of decellularized tendon stacked with alternating fiber directions that maintain much of collagen's natural strength.

Bioskiving does not dilute collagen's natural properties, says Qiaobing Xu, assistant professor of biomedical engineering, and inventor of the new technique. "Our method leverages collagen's native attributes to take advantage of the well-organized micro/nanostructures that nature already provides," he says.

Xu and Kyle Alberti, a Ph.D. student in Xu's lab, describe their technology in the paper "Slicing, Stacking and Rolling: Fabrication of Nanostructured Collagen Constructs from Tendon Sections" published online in Advanced Healthcare Materials on December 12, 2012.

Slice, Stack, and Roll

In their research, Xu and Albert cut small sections of collagen from bovine tendons. Using a specialized detergent, the researchers decellularized the sections, leaving intact only the extracellular collagen matrix made of bundles of aligned collagen nanofibers.

Xu and Alberti sliced the sections into ultra-thin sheets using a microtome, and then stacked 10 slices, crisscrossing the sheets so that the fibers in one ran perpendicular to those above and below it. This process produced a scaffold material with tensile strength stronger than constructs made using common processing techniques, Xu notes.

The researchers also created tubular scaffolding by rolling layers of collagen sheets around Teflon-coated glass rods. The sheets were layered so that fibers ran along the length and the circumference of the rods. This process yielded tubes that were found to be stronger than similar tubes made of reconstituted collagen. They also maintained their highly aligned fiber structure.

"Alignment gives the scaffold the ability to guide the direction and orientation of cell growth," says Xu, who also has a faculty appointment at Tufts School of Medicine, "This capability is beneficial for tissue engineering applications where biocompatibility and the ability to guide unidirectional nerve growth are both desired, such as prosthetic or tissue engineering-based blood vessels or nerve conduits."


'/>"/>

Contact: Alex Reid
Alexander.Reid@tufts.edu
617-627-4173
Tufts University
Source:Eurekalert  

Related biology news :

1. Building the European Unions Natura 2000 -- the largest ever network of protected areas
2. Newly found protein helps cells build tissues
3. New study finds a protein combination is best to consume post-workout for building muscle
4. Heart study suggests city center pollution doubles risk of calcium build-up in arteries
5. Light weights are just as good for building muscle, getting stronger, researchers find
6. UC Santa Cruz builds national data center for cancer genome research
7. CUNY Energy Institute battery system could reduce buildings electric bills
8. A cells first steps: Building a model to explain how cells grow
9. Stealing lifes building blocks
10. Blood-brain barrier building blocks forged from human stem cells
11. Building global collaboration for biodiversity intelligence
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Slice, stack, and roll: A new way to build collagen scaffolds
(Date:4/28/2016)... First quarter 2016:   , ... the first quarter of 2015 The gross margin was ... 18.8) and the operating margin was 40% (-13) Earnings ... flow from operations was SEK 249.9 M (21.2) , ... SEK 7,000-8,500 M. The operating margin for 2016 is ...
(Date:4/19/2016)... 2016 The new GEZE SecuLogic ... web-based "all-in-one" system solution for all door components. It ... the door interface with integration authorization management system, and ... The minimal dimensions of the access control and the ... installations offer considerable freedom of design with regard to ...
(Date:4/14/2016)... BioCatch ™, the global ... the appointment of Eyal Goldwerger as CEO. ... Goldwerger,s leadership appointment comes at a time of significant ... of its platform at several of the world,s largest ... unique cognitive and physiological factors, is a winner of ...
Breaking Biology News(10 mins):
(Date:6/22/2016)... ... June 22, 2016 , ... Quantitative ... business incubator and current participant in the Phase 1 Ventures program, is leveraging ... , Quantitative Radiology Solutions helps physicians make better treatment decisions by quantifying ...
(Date:6/22/2016)... (PRWEB) , ... June 21, 2016 , ... New light-based ... cutting into the tissue — promise to enable both compact, wearable devices for point-of-care ... even deeper under the skin. , Recent work and visionary future directions are detailed ...
(Date:6/22/2016)... SAN DIEGO , June 22, 2016 /PRNewswire/ ... that has developed a testing platform designed specifically ... the formation of their scientific advisory board (SAB). ... of directors, the SAB is chartered to advise ... infectious disease assay platform. Led by Dr. ...
(Date:6/22/2016)... June 22, 2016 On Tuesday, June ... 4,843.76, up 0.14%; the Dow Jones Industrial Average advanced 0.14% ... 2,088.90, up 0.27%. The gains were broad based as five ... has initiated coverage on the following equities: Minerva Neurosciences Inc. ... PTLA ), Trevena Inc. (NASDAQ: TRVN ), ...
Breaking Biology Technology: