Navigation Links
Skin-like tissue developed from human embryonic stem cells
Date:7/21/2009

BOSTON (July 21, 2009) Dental and tissue engineering researchers at Tufts University School of Dental Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts have harnessed the pluripotency of human embryonic stem cells (hESC) to generate complex, multilayer tissues that mimic human skin and the oral mucosa (the moist tissue that lines the inside of the mouth). The proof-of-concept study is published online in advance of print in Tissue Engineering Part A.

"For the first time, we have established that a single source of hESC can provide the multiple cell types needed to interact within a three-dimensional tissue model to generate complex, multilayer tissues. We are a step closer to a practical therapy to help with diseases of the skin and mouth," said Jonathan Garlick, DDS, PhD, professor of oral and maxillofacial pathology at Tufts University School of Dental Medicine and a member of the cell, molecular & developmental biology program faculty at the Sackler School of Biomedical Sciences at Tufts.

"Researchers have been seeking methods to grow skin-like tissues outside of the body using new sources of stem cells such as hESC, with the goal of advancing regenerative medicine as a new therapy to replace or repair damaged or diseased tissue. Little is known about how hESC can be developed into the multilayer tissues similar to those that line the gums, cheeks, lips, and other areas in the mouth. We used in vitro tissue engineering techniques to produce skin-like tissues that mimic the lining tissues found in the oral cavity," said Garlick.

Using a combination of chemical nutrients and specialized surfaces for cell attachment, an hES cell line (H9) was directed to form two distinct specialized cell populations. The first population forms the surface layer (ectodermal, the precursor to epithelial tissue), while the second is found beneath the surface layer (mesenchymal).

Following the isolation and characterization of these cell populations, the researchers incorporated them into an engineered, three-dimensional tissue system where they were grown at an air-liquid interface to mimic their growth environment in the oral cavity. Within two weeks, tissues developed that were similar in structure to those constructed using mature cells derived from newborn skin, which are the current gold standard for tissue fabrication.

"These engineered tissues are remarkably similar to their human counterparts and can be used to address major concerns facing the field of stem cell biology that are related to their clinical use. We can now use these engineered tissues as 'tissue surrogates' to begin to predict how stable and safe hESC-derived cells will be after therapeutic transplantation. Our goal is to produce functional tissues to treat oral and skin conditions, like the early stages of cancer and inflammatory disease, as well as to accelerate the healing of recalcitrant wounds," said Garlick.


'/>"/>

Contact: Siobhan Gallagher
617-636-6586
Tufts University, Health Sciences
Source:Eurekalert

Related biology news :

1. A step toward tissue-engineered heart structures for children
2. Researchers create system to build transplant tissue
3. Chloroplast f and m Thioredoxins Discovered in Nonphotosynthetic Tissues
4. Natural product discovery by Cleveland medical researchers blocks tissue destruction
5. Knocking out cell receptor may help block fat deposits in tissues, prevent weight gain
6. Intravenous gene therapy protects normal tissue of mice during whole-body radiation
7. Breast cancer research and inkjet tissue printing get NSF boost
8. Raydiance collaborates with Rutgers, MTF to develop innovative tissue processing approaches
9. Human embryonic stem cell -- derived bone tissue closes massive skull injury
10. Setting a course for the future of tissue engineering
11. New mechanical insights into wound healing and scar tissue formation
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/18/2016)... --> --> ... & Unmanned Vehicles, Physical infrastructure and Perimeter Surveillance & Detection ... border security market and the continuing migration crisis in the ... has led visiongain to publish this unique report, ... defence & security companies in the border security ...
(Date:3/15/2016)... 15, 2016 Yissum Research Development Company ... company of the Hebrew University, announced today the formation ... technology of various human biological indicators. Neteera Technologies has ... from private investors. ... detection of electromagnetic emissions from sweat ducts, enables reliable ...
(Date:3/11/2016)... , March 11, 2016 http://www.apimages.com ) - ... reference: Picture is available at AP Images ( http://www.apimages.com ) - ... will be used to produce the new refugee identity cards. DERMALOG ... innovations, at CeBIT in Hanover next week.   ... DERMALOG will be used to produce the new refugee identity cards. ...
Breaking Biology News(10 mins):
(Date:5/4/2016)... Missouri (PRWEB) , ... May 04, 2016 , ... PBI-Gordon ... Professional and Agricultural Sales. , Doug began his career at PBI-Gordon in February ... served in a wide variety of roles, ranging from customer service to national product ...
(Date:5/3/2016)... India , May 3, 2016 /PRNewswire/ ... (DNA Chip (Genomics, Drug Discovery, Gene Expression) ... End user (Academics Institutes, Diagnostics Centers), Fabrication ... published by MarketsandMarkets, the market is expected ... from USD 7.63 Billion in 2015, growing ...
(Date:5/3/2016)... ... 03, 2016 , ... In a list published by the Boston Business Journal, ... private companies; a small percentage of the state's 615,000+ small businesses. The list examined ... in revenue from 2012 to 2015. , As this award comes on ...
(Date:5/3/2016)... ... May 03, 2016 , ... Flagship Biosciences, the leader ... to its Board of Directors. Dr. Gillett recently retired from Charles River Laboratories ... and Chief Scientific Officer. A board-certified veterinary pathologist, Dr. Gillett joined Charles River ...
Breaking Biology Technology: