Navigation Links
Single-cell transfection tool enables added control for biological studies
Date:5/21/2013

Northwestern University researchers have developed a new method for delivering molecules into single, targeted cells through temporary holes in the cell surface. The technique could find applications in drug delivery, cell therapy, and related biological fields.

Bulk electroporation a technique used to deliver molecules into cells through reversible nanopores in the cell membrane that are caused by exposing them to electric pulses is an increasingly popular method of cell transfection. (Cell transfection is the introduction of molecules, such as nucleic acids or proteins, into a cell to change its properties.)

However, because bulk electroporation applies electric pulses to a bulk cell solution, it results in heterogeneous cell populations and often low cell viability. To solve these problems, Northwestern University researchers have developed a novel tool for single-cell transfection.

The new method, called nanofountain probe electroporation (NFP-E), allows researchers to deliver molecules into targeted cells through temporary nanopores in the cell membrane created by a localized electric field applied to a small portion of the cell. The method enables researchers to control dosage by varying the duration of the electric pulses, which provides unprecedented control of cell transfection.

"This is really exciting," said Horacio Espinosa, James and Nancy Farley Professor of Manufacturing and Entrepreneurship at Northwestern's McCormick School of Engineering and one of the paper's authors. "The ability to precisely deliver molecules into single cells is needed for biotechnology researchers to advance the state-of-the-art in therapeutics, diagnostics, and drug delivery toward the promise of personalized medicine."

A paper describing the research, "Nanofountain Probe Electroporation (NFP-E) of Single Cells," was published May 7 in the journal Nano Letters.

NFP-E is based on nanofountain probe (NFP) technology developed in Espinosa's lab. The NFP-E chip consists of an array of microfabricated cantilever probes with integrated microfluidic channels. The probe has previously been used for high-speed nanopatterning of proteins and nanoparticles for drug delivery studies.

The new single-cell transfection application couples the probe with an electrode and fluid control system that can be easily connected to a micromanipulator or atomic force microscope for position control. This integrated system allows the entire transfection process and post-transfection cell response to be monitored by an optical microscope.

The NFP-E system is being developed for commercialization by iNfinitesimal LLC, a Northwestern spin-off company founded by Espinosa, and is expected to be available in late 2013.

The technique is proving to be extremely robust and multi-functional. Researchers have used the NFP-E chip to transfect HeLa cells with polysaccharides, proteins, DNA hairpins, and plasmid DNA with single-cell selectivity, high transfection efficiency (up to 95%), qualitative dosage control, and very high viability (up to 92%).


'/>"/>

Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Source:Eurekalert

Related biology news :

1. Nanobubbles plus chemotherapy equals single-cell cancer targeting
2. Single-cell parasites co-opt ready-made genes from host: UBC research
3. DNA analysis aids in classifying single-celled algae
4. They hunt, they kill, they cheat: Single-celled algae shed light on social lives of microbes
5. Keck award enables Carnegie Mellon and Stanford to dramatically expand crowdsourced RNA design
6. New genomic sequencing method enables smarter anaysis of individual cells
7. New technique enables high-sensitivity view of cellular functions
8. Aware Enables Automated Delivery of Radiation Dose Information Through Integration With Leading Radiology Reporting System
9. Mutation altering stability of surface molecule in acid enables H5N1 infection of mammals
10. Fish oil added to yogurt may help consumers meet daily nutritional requirements
11. Virginia Tech announces 2012 football helmet ratings; 2 more added to the 5-star mark
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/6/2017)... 6, 2017 Forecasts by Product ... Readers, by End-Use (Transportation & Logistics, Government & Public ... & Fossil Generation Facility, Nuclear Power), Industrial, Retail, Business ... Are you looking for a definitive report on ... ...
(Date:4/4/2017)... , April 4, 2017   EyeLock LLC , ... that the United States Patent and Trademark Office (USPTO) ... covers the linking of an iris image with a ... and represents the company,s 45 th issued patent. ... is very timely given the multi-modal biometric capabilities that ...
(Date:3/30/2017)... March 30, 2017 Trends, opportunities and forecast ... behavioral), by technology (fingerprint, AFIS, iris recognition, facial recognition, ... others), by end use industry (government and law enforcement, ... and banking, and others), and by region ( ... Asia Pacific , and the Rest ...
Breaking Biology News(10 mins):
(Date:4/27/2017)... ... April 27, 2017 , ... Mitotech S.A, a Luxembourg based clinical stage biotechnology ... patients. LHON is a rare devastating genetic disease that leads to a sudden and ... group of 20 patients carrying 11778, 14484 and 3460 mutations and having experienced the ...
(Date:4/27/2017)... ... April 27, 2017 , ... Sierra Instruments ... based on capillary thermal mass flow technology provide exponentially more accurate mass flow ... Over 80% of all industrial processes—such as those involving chemical reactions, combustion, respiration, ...
(Date:4/27/2017)... -- Pendant Biosciences, Inc. (formerly Nanoferix, Inc.), a privately-held advanced ... technologies, today announced that it has been accepted into ... . Shawn Glinter , Founder ... are excited to become part of the JLABS @ ... to be the first Tennessee -based ...
(Date:4/26/2017)... ... April 26, 2017 , ... Led by ex-FDA official Peggy ... comes to Tampa, San Francisco and Boston in 2017. The 2016 sold-out ... such as Pfizer Inc., Teva Pharmaceuticals, Advaxis, Inc., Ocular Therapeutix Inc., Cell Culture ...
Breaking Biology Technology: