Navigation Links
Simulation reveals how body repairs balance after damage

ATLANTA (September 25, 2007) Your body goes to a lot of trouble to make sure you stay upright. But when the brains neural pathways are impaired through injury, age or illness, muscles are deprived of the detailed sensory information they need to perform the constant yet delicate balancing act required for normal movement and standing.

With an eye towards building robots that can balance like humans, researchers at Georgia Tech and Emory University have created a computer simulation that sheds new light on how the nervous system reinvents its communication with muscles after sensory loss. The findings could someday be used to better diagnose and rehabilitate patients with balance problems (through normal aging or diseases such as Multiple Sclerosis or Parkinsons) by retraining their muscles and improving overall balance. The research will be published in the October issue of Nature Neuroscience.

The ultimate goal of rehabilitation is for patients to find the best way to adapt to their particular deficit. This system may help predict what the optimum combination of muscle and nerve activity looks like for each patient, helping patients and doctors set realistic goals and speeding recovery, said Lena Ting, lead researcher on the project and an assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

In a body without balance impairment, the nervous system collects sensory information from all over the body (skin, ears, feet, arms, eyes, etc.) and transmits this information to the muscles that control balance. When that information changes through the introduction of something like a strong wind, a raised crack in the pavement or an accidental bump from a nearby stranger, the nervous system sends the new information to the muscles and they adjust accordingly to maintain the bodys balance.

Impairments and injuries to the nervous system or the senses that report to the nervous system (experienced with a loss of vision or touch and problems in the inner ear) lead to balance problems. Experts traditionally have had little understanding of how the nervous systems communication with the muscles associated with balance changes when one or several pieces of necessary sensory information are missing.

Georgia Tech and Emory researchers set out to create an effective way to interpret how commands from the nervous system to muscles (measured through electrical signals in the muscles) are changed by sensory impairment similar to the numbing of feet experienced by diabetes patients and how these changes affect balance control. The team started with data sets from animals. They were able to determine that, after a period of rehabilitation, subjects with some sensory damage were able to regain their balance despite the loss of some sensory information. So how do the nervous system and muscles fill in the information gaps"

The Georgia Tech and Emory team hypothesized that the nervous system relies on the relationship between the bodys center of gravity and its environment to control balance. They reasoned that the best predictor of how muscles would be activated when the subject experienced a balance threat was not the motion of the individual body parts, but the horizontal motion of the bodys center of gravity.

To test their theory, the researchers created a computer simulation that could accurately simulate standing balance and muscle reactions to balance disturbances by focusing on the relation of the subjects center of gravity to the ground. Rather than predicting neural control patterns for the multitude of sensory information processed by the body to maintain balance, the team instead tracked a small set of signals related to the bodys control of its center of gravity.

The Georgia Tech and Emory team determined that subjects who had impaired sensory information were slowly using new sensory pathways to track the motion of the bodys center of gravity, compensating for the loss of information from the damaged sensory pathways. In effect, the subjects muscles were using different neural information to perform the same balance tasks, resulting in muscle activity patterns that looked abnormal, but that were actually similar to the predicted optimum.

The research team is now testing its center of gravity simulation with human subjects and a small robot with simulated muscles. They predict that the simulation could recognize impairment and pinpoint the optimum recovery points for each sensory-impaired subject all based on the bodys reliance on center of gravity information. When applied to a robot, these neural communication patterns allowed the robot to successfully move fluidly like an animal, in contrast to what its gears and motors might suggest. The robot demonstrates all of the different strategies that could be used by normal and sensory-loss patients.

This finding will change the way we approach rehabilitation, Ting said. We cant expect patients to mimic normal balance performance when theyre using a different set of sensory information. Instead, our work can help identify the best performance possible given a patients level and type of sensory impairment.


Contact: Megan McRainey
Georgia Institute of Technology

Related biology news :

1. MSI releases moleculizer - a new approach to simulation of intracellular biochemical networks
2. Large-scale Computer Simulations Reveal New Insights Into Antibiotic Resistance
3. NYU chemists use computer simulation to enhance understanding of DNA transcription
4. Sensor web simulation investigates technique to improve prediction of pollution across the globe
5. Largest computational biology simulation mimics life’s most essential nanomachine
6. Computer simulation hints at new HIV drug target
7. Virginia Techs System X supercomputer provides super tool for simulation of cell division
8. Simulations unravel outer membrane transport mechanism
9. NYU Study Reveals How Brains Immune System Fights Viral Encephalitis
10. A bacterial genome reveals new targets to combat infectious disease
11. Needling Chromosomes Reveals Cell Division Secret
Post Your Comments:
(Date:10/29/2015)... Oct. 29, 2015 Daon, a global leader ... has released a new version of its IdentityX ... North America have already installed IdentityX ... includes a FIDO UAF certified server component ... to activate FIDO features. These customers include some of ...
(Date:10/27/2015)... YORK , Oct. 27, 2015 In ... major issues of concern for various industry verticals such ... is due to the growing demand for secure & ... in various ,sectors, such as hacking of bank accounts, ... for electronic equipment such as PC,s, laptops, and smartphones ...
(Date:10/26/2015)... 2015  Delta ID Inc., a company focused on ... PC devices, announced its ActiveIRIS® technology powers the iris ... launched by NTT DOCOMO, INC in Japan ... smartphone to include iris recognition technology, after a very ... in May 2015, world,s first smartphone to have this ...
Breaking Biology News(10 mins):
(Date:12/1/2015)... , ... December 01, 2015 , ... Matthew “Tex” VerMilyea, ... post, VerMilyea will oversee all IVF lab procedures as well as continue ... preservation. , “We traveled 7,305 miles to Auckland, New Zealand to bring home a ...
(Date:11/30/2015)... ... November 30, 2015 , ... Global Stem Cells Group ... of a new closed system for isolating adipose-derived stem cells. The announcement starts a ... of adipose tissue. SVF is a component of the lipoaspirate obtained from liposuction of ...
(Date:11/30/2015)... , Dec. 1, 2015  An interventional radiology technique shows ... the preliminary results of a study being presented today at ... North America (RSNA). --> ... for decades by interventional radiologists as a way to stop ... procedure as a means of treating obesity is new. ...
(Date:11/30/2015)...  Culprits beware, a University at Albany research ... is taking crime scene fingerprint identification to a ... -->   --> Photo ... --> Halámek and his team ... concept for identifying whether a culprit is male ...
Breaking Biology Technology: