Navigation Links
Simplifying heart surgery with stretchable electronics devices
Date:11/15/2012

Researchers at the McCormick School of Engineering are part of a team that has used stretchable electronics to create a multipurpose medical catheter that can both monitor heart functions and perform corrections on heart tissue during surgery.

The device marks the first time stretchable electronics have been applied to a surgical process known as cardiac ablation, a milestone that could lead to simpler surgeries for arrhythmia and other heart conditions. The researchers had previously demonstrated the concept to apply stretchable electronics to heart surgery, but with this research improved the design's functionality to the point that it could be utilized in animal tests.

Researchers utilized stretchable electronics to create a catheter to make cardiac ablation simpler.

A paper describing the research, "Electronic Sensor and Actuator Webs for Large-Area Complex Geometry Cardiac Mapping and Therapy," was published November 12 in the Proceedings of the National Academy of Sciences.

Cardiac ablation is a surgical technique that corrects heart rhythm irregularities by destroying specific heart tissue that triggers irregular heartbeats. The procedure is typically performed either with open-heart surgery or by inserting a series of long, flexible catheters through a vein in the patient's groin and into his heart.

Currently this catheter method requires the use of three different devices, which are inserted into the heart in succession: one to map the heart's signals and detect the problem area, a second to control positions of therapeutic actuators and their contact with the epicardium, and a third to burn the tissue away.

"Our catheter replaces all three devices previously needed for cardiac ablation therapy, making the surgery faster, simpler, and with a lower risk of complication," said Yonggang Huang, Joseph Cummings Professor of Civil and Environmental Engineering and Mechanical Engineering at McCormick.

Central to the design is a section of catheter that is printed with a thin layer of stretchable electronics. The catheter's exterior protects the electronics during its trip through the bloodstream; once inside the heart, the catheter is inflated like a balloon, exposing the electronics to a larger surface area inside the heart.

With the catheter is in place, the individual devices within can perform their specific tasks. A pressure sensor determines the pressure on the heart; an EKG sensor monitors the heart's condition during the procedure; and a temperature sensor controls the temperature so as not to damage surrounding tissue. The temperature can also be controlled during the procedure without removing the catheter.

These devices can deliver critical, high-quality information such as temperature, mechanical force, and blood flow to the surgeon in real time, and the system is designed to operate reliably without any changes in properties as the balloon inflates and deflates.


'/>"/>

Contact: Megan Fellman
fellman@northwestern.edu
847-491-3115
Northwestern University
Source:Eurekalert

Related biology news :

1. Regenerating heart tissue topic of UH lecture Nov. 27
2. Bone marrow stem cells do not improve short-term recovery after heart attack
3. Losing protein helps heart recover, say Temple scientists
4. Softening arteries, protecting the heart
5. First-ever 3-D stress map of developing embryonic heart sheds light on why defects form
6. Finding triggers of birth defects in an embryo heart
7. Reducing radiation: Heart Institute model shows hope for new standards worldwide
8. Obese moms give birth to heart healthier kids following bariatric surgery
9. Exercise is smart for your heart - and makes you smarter
10. National Heart Centre Singapore develops worlds first human heart cell model
11. Pioneering researcher receives Heart Association Lifetime Achievement Award
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:5/24/2016)... , May 24, 2016 Ampronix facilitates superior patient care by providing unparalleled ... medical LCD display is the latest premium product recently added to the range of ... ... ... Sony 3d Imaging- LCD Medical Display- Ampronix News ...
(Date:5/12/2016)... , May 12, 2016 WearablesResearch.com ... just published the overview results from the Q1 wave ... the recent wave was consumers, receptivity to a program ... data with a health insurance company. "We ... to share," says Michael LaColla , CEO of ...
(Date:4/28/2016)... SAN FRANCISCO and BANGALORE, India ... part of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... service provider, today announced a global partnership that ... convenient way to use mobile banking and payment services. ... Mobility is a key innovation area for financial services, but ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... ... the launch of the Supplyframe Design Lab . Located in Pasadena, Calif., ... the future of how hardware projects are designed, built and brought to market. ...
(Date:6/23/2016)... BEACH, Calif. , June 23, 2016  Blueprint ... new biological discoveries to the medical community, has closed ... co-founder Matthew Nunez . "We have ... us with the capital we need to meet our ... will essentially provide us the runway to complete validation ...
(Date:6/23/2016)... Prairie, WI (PRWEB) , ... June 23, 2016 ... ... consultancy focused on quality, regulatory and technical consulting, provides a free webinar ... is presented on July 13, 2016 at 12pm CT at no charge. , ...
(Date:6/22/2016)... 22, 2016 Cell Applications, Inc. and ... to produce up to one billion human induced ... one week. These high-quality, consistent stem cells enable ... and spend more time doing meaningful, relevant research. ... high-volume manufacturing process that produces affordable, reliable HiPSC ...
Breaking Biology Technology: