Navigation Links
Signaling pathway linked to fetal alcohol risk
Date:2/20/2013

Fetal alcohol syndrome is the leading preventable cause of developmental disorders in developed countries. And fetal alcohol spectrum disorder (FASD), a range of alcohol-related birth defects that includes fetal alcohol syndrome, is thought to affect as many as 1 in 100 children born in the United States.

Any amount of alcohol consumed by the mother during pregnancy poses a risk of FASD, a condition that can include the distinct pattern of facial features and growth retardation associated with fetal alcohol syndrome as well as intellectual disabilities, speech and language delays, and poor social skills. But drinking can have radically different outcomes for different women and their babies. While twin studies have suggested a genetic component to susceptibility to FASD, researchers have had little success identifying who is at greatest risk or what genes are at play.

Research from Harvard Medical School and Veterans Affairs Boston Healthcare System sheds new light on this question, identifying for the first time a signaling pathway that might determine genetic susceptibility for the development of FASD. The study was published online Feb. 18 in the journal Proceedings of the National Academy of Sciences.

"Our work points to candidate genes for FASD susceptibility and identifies a path for the rational development of drugs that prevent ethanol neurotoxicity," said Michael Charness, chief of staff at VA Boston Healthcare System and HMS professor of neurology. "And importantly, identifying those mothers whose fetuses are most at risk could help providers better target intensive efforts at reducing drinking during pregnancy."

The discovery also solves a riddle that had intrigued Charness and other researchers for nearly two decades. In 1996, Charness and colleagues discovered that alcohol disrupted the work of a human protein critical to fetal neural developmenta major clue to the biological processes of FASD. The protein, L1, projects through the surface of a cell to help it adhere to its neighbors. When Charness and his team introduced the protein to a culture of mouse fibroblasts cells, L1 increased cell adhesion. Tellingly, the effect was erased in the presence of ethanol (beverage alcohol).

Charness and his team went on to develop multiple cell lines from that first culture, and that's where they encountered the riddle: In some of those lines, alcohol disrupted L1's adhesive effect, while in others it did not.

"How could it be possible that a cell that expresses L1 is completely sensitive to alcohol, and others that express it are completely insensitive?" asked Charness, who is also faculty associate dean for veterans hospital programs at HMS and assistant dean at Boston University School of Medicine.

Clearly, something else was affecting the protein's sensitivity to alcohol but what? Studies of twins provided one clue: Identical twins are more likely than fraternal twins to have the same diagnosis, positive or negative, for FASD. "That concordance suggests that there are modifying genes, susceptibility genes, that predispose to this condition," Charness said.

In the current study, Charness' team and collaborators at the University of North Carolina School of Medicine in Chapel Hill conducted cell culture experiments to identify specific molecular events that contribute to the alcohol sensitivity of L1 adhesion molecules. They focused on what was happening to the L1 molecule inside a cell that could affect an event outside the cell such as disruption by alcohol.

"We found that phosphorylation events that begin inside the cell can render the external portion of the L1 adhesion molecule more vulnerable to inhibition by alcohol," said Xiaowei Dou, HMS instructor in neurology in the Charness Lab and first author on the new study. "Phosphorylation was controlled by the enzyme ERK2, and occurred at a specific location on the internal portion of the L1molecule."

Phosphorylation plays a significant role in a wide range of cellular processes. By adding a phosphate group to a protein or other molecule, phosphorylation turns many protein enzymes on and off, and thereby alters their function and activity.

The researchers also found that variations in ERK2 activity correlated with differences in L1 sensitivity to alcohol that they observed across cell lines and among different strains of mice. "Dou showed that he could take these cells that had been insensitive to alcohol for 13-14 years, and make them sensitive by ramping up the activity of this kinase" Charness said.

These variations suggest that genes for ERK2 and the signaling molecules that regulate ERK2 activity might influence genetic susceptibility to FASD. Moreover, their identification of a specific locus that regulates the alcohol sensitivity of L1 might facilitate the rational design of drugs that block alcohol neurotoxicity.

"The only thing this modification blocked was alcohol's ability to inhibit L1," Charness said. "If you're looking for a drug, ideally you're looking for it to block the effects of the toxin without interfering with the target molecule of the toxin."

The findings will also help guide an international consortium in its search for genes linked to families with fetal alcohol spectrum disorders.

"Prenatal alcohol exposure is the leading preventable cause of birth defects and developmental disorders in the United States," said Kenneth Warren, acting director of the National Institute on Alcohol Abuse and Alcoholism (NIAAA),which supported the study. "These new findings are yet another important contribution from researchers who have been at the forefront of scientific discovery in FASD."


'/>"/>

Contact: David Cameron
david_cameron@hms.harvard.edu
617-432-0441
Harvard Medical School
Source:Eurekalert

Related biology news :

1. FASEB SRC announces conference: TGF-β Superfamily: Signaling in Development & Disease
2. FASEB SRC announces conference registration open for: NAD Metabolism & Signaling
3. FASEB SRC announces conference registration open for: Histone Deacetylases, Sirtuins, and Reversible Acetylation in Signaling and Disease
4. Waste removal in worms reveals new mechanism to regulate calcium signaling
5. Cholesterol helps regulate key signaling proteins in the cell
6. Researchers describe new molecular interactions behind the inhibition of TGF beta-signaling
7. Ion selectivity in neuronal signaling channels evolved twice in animals
8. Scientists tie DNA repair to key cell signaling network
9. To drive infections, a hijacking virus mimics a cells signaling system
10. Pathway for membrane building blocks
11. Thomas Jefferson University researchers discover new pathways that drive metastatic prostate cancer
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:2/8/2017)... 2017 The biometrics market has reached ... of organizations, desires to better authenticate or identify ... and challenge questions), biometrics is quickly working its ... market is driven by use cases, though there ... enterprise uses cases, with consumer-facing use cases encompassing ...
(Date:2/6/2017)... , Feb. 6, 2017 According to ... are driving border authorities to continue to embrace ... there are 2143 Automated Border Control (ABC) eGates ... deployed at more than 163 ports of entry ... to 2016 achieving a combined CAGR of 37%. ...
(Date:2/2/2017)... 1, 2017  Central to its deep commitment ... worldwide, The Japan Prize Foundation today announced the ... pushed the envelope in their respective fields of ... scientists are being recognized with the 2017 Japan ... only contribute to the advancement of science and ...
Breaking Biology News(10 mins):
(Date:2/16/2017)... ... ... EIT Digital has launched work to develop a new Smart IOT ... to get under way for the framework, which is designed to reduce the use ... to be transferred eventually to other industries that also require efficient IoT and management ...
(Date:2/16/2017)... , Feb. 16, 2017  MDNA Life ... the development of liquid biopsy tests based on ... into an exclusive license agreement with its first ... proprietary liquid biopsy test for prostate cancer, the ... Korea . This is the first overseas ...
(Date:2/16/2017)... Feb. 16, 2017   Biostage, Inc. (Nasdaq: ... biotechnology company developing bioengineered organ implants to treat cancers ... trachea, announced today the closing on February 15, 2017 ... of common stock and warrants to purchase 20,000,000 shares ... million. The offering was priced at $0.40 per share ...
(Date:2/16/2017)... N.J. , Feb. 16, 2017  Champions Oncology, ... in the development and sale of advanced technology solutions ... oncology drugs, today announced the addition of new cohorts ... These new models will expand Champions, product line ... head and neck cancer, AML, and non-small cell lung ...
Breaking Biology Technology: