Navigation Links
Short-term memory is based on synchronized brain oscillations
Date:1/31/2012

This press release is available in German.

Holding information within one's memory for a short while is a seemingly simple and everyday task. We use our short-term memory when remembering a new telephone number if there is nothing to write at hand, or to find the beautiful dress inside the store that we were just admiring in the shopping window. Yet, despite the apparent simplicity of these actions, short-term memory is a complex cognitive act that entails the participation of multiple brain regions. However, whether and how different brain regions cooperate during memory has remained elusive. A group of researchers from the Max Planck Institute for Biological Cybernetics in Tbingen, Germany have now come closer to answering this question. They discovered that oscillations between different brain regions are crucial in visually remembering things over a short period of time.

It has long been known that brain regions in the frontal part of the brain are involved in short-term memory, while processing of visual information occurs primarily at the back of the brain. However, to successfully remember visual information over a short period of time, these distant regions need to coordinate and integrate information.

To better understand how this occurs, scientists from the Max Planck Institute of Biological Cybernetics in the department of Nikos Logothetis recorded electrical activity both in a visual area and in the frontal part of the brain in monkeys. The scientists showed the animals identical or different images within short intervals while recording their brain activity. The animals then had to indicate whether the second image was the same as the first one.

The scientists observed that, in each of the two brain regions, brain activity showed strong oscillations in a certain set of frequencies called the theta-band. Importantly, these oscillations did not occur independently of each other, but synchronized their activity temporarily: "It is as if you have two revolving doors in each of the two areas. During working memory, they get in sync, thereby allowing information to pass through them much more efficiently than if they were out of sync," explains Stefanie Liebe, the first author of the study, conducted in the team of Gregor Rainer in cooperation with Gregor Hrzer from the Technical University Graz. The more synchronized the activity was, the better could the animals remember the initial image. Thus, the authors were able to establish a direct relationship between what they observed in the brain and the performance of the animal.

The study highlights how synchronized brain oscillations are important for the communication and interaction of different brain regions. Almost all multi-faceted cognitive acts, such as visual recognition, arise from a complex interplay of specialized and distributed neural networks. How relationships between such distributed sites are established and how they contribute to represent and communicate information about external and internal events in order to attain a coherent percept or memory is still poorly understood.


'/>"/>
Contact: Dr. Stefanie Liebe
stefanie.liebe@tuebingen.mpg.de
44-207-837-5433
Max-Planck-Gesellschaft
Source:Eurekalert  

Related biology news :

1. Some short-term memories die suddenly, no fading
2. Short-term school closures may worsen flu pandemics, Pitt study finds
3. Fly guy makes memory breakthrough
4. SUNY Downstate researchers find that memory storage molecule preserves complex memories
5. Developer of advanced computing memory, father of biochemical engineering, and innovative engineering educators win highest engineering honors of 2009
6. DREAM: 1 gene regulates pain, learning and memory
7. Crabs memory of pain confirmed by Queens academic
8. Computer simulations explain the limitations of working memory
9. Caltech scientists reveal how neuronal activity is timed in brains memory-making circuits
10. UT San Antonio researcher wins $917,000 from NIH to study memory
11. Researchers see evidence of memory in the songbird brain
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Short-term memory is based on synchronized brain oscillations
(Date:4/4/2017)...   EyeLock LLC , a leader of iris-based ... Patent and Trademark Office (USPTO) has issued U.S. Patent ... an iris image with a face image acquired in ... 45 th issued patent. "The ... the multi-modal biometric capabilities that have recently come to ...
(Date:3/30/2017)... KONG , March 30, 2017 The ... a system for three-dimensional (3D) fingerprint identification by adopting ground breaking ... into a new realm of speed and accuracy for use in ... at an affordable cost. ... ...
(Date:3/28/2017)... , March 28, 2017 The ... Hardware (Camera, Monitors, Servers, Storage Devices), Software (Video Analytics, ... Region - Global Forecast to 2022", published by MarketsandMarkets, ... 2016 and is projected to reach USD 75.64 Billion ... and 2022. The base year considered for the study ...
Breaking Biology News(10 mins):
(Date:5/23/2017)... ... May 23, 2017 , ... ... month its 20th anniversary, marking the occasion with a strong presence at Bio-IT ... Welcome Reception and further extends an invitation to all attendees to view ...
(Date:5/23/2017)... ... , ... Vortex Biosciences , provider of circulating tumor cell (CTC) capture ... using Vortex microfluidic technology ” in Nature Precision Oncology on May 8th. The ... and Dr. Matthew Rettig at the University of California, Los Angeles. The publication describes ...
(Date:5/23/2017)... ... ... Bacterial biofilms, surface adherent communities of bacteria that are encased in a ... and catheter infections to gum disease and the rejection of medical implants. Though ... year, there is currently a paucity of means for preventing their formation or treating ...
(Date:5/22/2017)... ... May 22, 2017 , ... Stratevi, a boutique firm that partners ... Coast. It has opened an office in downtown Boston at 745 Atlantic Ave. ... more important to generate evidence on the value they provide, not just to patients, ...
Breaking Biology Technology: