Navigation Links
Shock tactics: Bioelectrical therapy for cancer and birth defects?
Date:10/18/2010

Stem cell therapies hold increasing promise as a cure for multiple diseases. But the massive potential of a healthy stem cell has a flip side, as faulty regulation of stem cells leads to a huge range of human diseases. Even before birth, mistakes made by the stem cells of the foetus are a major cause of congenital defects, and cancer is also caused by the body losing control of stem cell function. Guiding stem cells along the correct pathways and, where necessary, reversing their mistakes is the goal of everyone in this field. Now, Michael Levin (http://www.drmichaellevin.org/) and colleagues from Tufts University (http://www.tufts.edu/), Medford, MA, have identified a novel and readily modifiable signal by which an organism can control the behaviour of stem cell offspring. Their work is published in Disease Models & Mechanisms on October 19th, 2010, at http://dmm.biologists.org/.

Levin's laboratory works on an intriguing phenomenon: bioelectrical signalling. There is always a difference in voltage, called the transmembrane potential, between the inside and outside of all cells, and controlling exactly what this difference is turns out to be vitally important. Specialised protein checkpoints sited in a cell's outer membrane regulate ion flow in and out of the cell, producing voltage gradients. These, combined with more conventional protein-based signalling systems, can specify cell destiny.

Levin's team already knew from collaborative work with David Kaplan's lab, also at Tufts, that the properties of human stem cells growing in artificial culture could be drastically altered by changing their transmembrane potential. Now they have taken this work one important step further, by asking whether tampering with the transmembrane potential of one kind of cell can have a domino effect in a whole organism, altering the destiny of other cell types. To do this, they focused on the development of neural crest stem cells, which are responsible for directing development of the face and heart, but which also generate melanocytes, the pigment cells of the skin. Using frog tadpoles and melanocytes as a model system, they showed that tweaking the transmembrane potential of a tiny population of 'instructor' cells sends a signal to developing melanocytes that causes them to overgrow and start to resemble metastatic cancer cells. Most excitingly, they found that the signal can travel over long distances in the tadpole, and that the messenger carrying it is serotonin an important neurotransmitter involved in mood regulation and many other aspects of nervous system function.

This novel bioelectrical method of changing stem cell behaviour has huge implications. It is very likely that there are similar 'instructor' cells that direct other important cell populations, and changing their voltage gradients would be relatively easy (Levin's lab simply used an anti-parasitic drug already available on prescription). The resulting bioelectrical therapy could potentially be harnessed to improve regenerative repair after injury, repair birth defects and detect and prevent cancer.


'/>"/>

Contact: Sarah Allan
sarah.allan@biologists.com
The Company of Biologists
Source:Eurekalert

Related biology news :

1. Molecular mechanism of anaphylactic shock decoded
2. Shock and kill research gives new hope for HIV-1 eradication
3. Targeting helpers of heat shock proteins could help treat cancer, cardiovascular disease
4. Septic shock: Nitric oxide beneficial after all
5. Kapahi to receive GSAs 2010 Nathan Shock New Investigator Award
6. Breast cancer cells recycle to escape death by hormonal therapy
7. On the trail of a targeted therapy for blood cancers
8. Researchers identify promising gene target for neuroblastoma therapy
9. Gene therapy restores vision to mice with retinal degeneration
10. How eating fruit and vegetables can improve cancer patients response to chemotherapy
11. Researchers at UH explore use of fat cells as heart attack therapy
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/23/2017)... PUNE, India , March 23, 2017 The report ... Equipment, Touchless Biometric), Industry, and Geography - Global Forecast to 2022", published by ... growing at a CAGR of 29.63% between 2017 and 2022. ... ... Logo ...
(Date:3/23/2017)... Research and Markets has announced the addition ... - Industry Forecast to 2025" report to their offering. ... The Global Vehicle ... around 8.8% over the next decade to reach approximately $14.21 billion ... estimates and forecasts for all the given segments on global as ...
(Date:3/22/2017)... March 21, 2017   Neurotechnology , a ... technologies, today announced the release of the ... provides improved facial recognition using up to 10 ... single computer. The new version uses deep neural-network-based ... and it utilizes a Graphing Processing Unit (GPU) ...
Breaking Biology News(10 mins):
(Date:3/22/2017)... ... March 21, 2017 , ... ... innovative Quantum peristaltic pump with patented ReNu single-use (SU) cartridge technology. Engineered ... for high-pressure feed pumps in SU tangential flow filtration (TFF), virus filtration ...
(Date:3/22/2017)... ... ... The Society for Immunotherapy of Cancer (SITC) strongly opposes the proposed budget ... year 2018 budget request. , This proposal calls for a reduction ... 20% of its total budget. If applied proportionally across NIH, funding for the National ...
(Date:3/22/2017)... and PETACH TIKVAH, Israel ... (NASDAQ: BCLI), a leading developer of adult stem cell ... Lebovits , Chief Executive Officer, will provide an update ... Associates 2 nd Annual Neuroscience Biopartnering and Investment ... the New York Academy of Sciences. ...
(Date:3/22/2017)... Mass. , March 22, 2017  RXi ... developing innovative therapeutics that address significant unmet medical ... RXi,s Chief Business Officer, will present at the ... forum will provide a platform to present to ... institutes, leading pharmaceutical and biotech companies as well ...
Breaking Biology Technology: