Navigation Links
Shifts in soil bacterial populations linked to wetland restoration success
Date:11/12/2008

DURHAM, N.C. -- A new study led by Duke University researchers finds that restoring degraded wetlands -- especially those that had been converted into farm fields -- actually decreases their soil bacterial diversity.

But that's a good thing, say the study's authors, because it marks a return to the wetland soils' natural conditions.

"It sounds counter-intuitive, but our study shows that in restored wetlands, decreased soil bacterial diversity represents a return to biological health," said Wyatt H. Hartman, a Ph.D. candidate in wetlands and environmental microbiology at Duke's Nicholas School of the Environment.

"Our findings are novel because they are the opposite of the response seen in terrestrial ecosystems, where restoration improves conditions from a more barren, degraded state," said Curtis J. Richardson, director of the Duke University Wetland Center and professor of resource ecology at the Nicholas School. Richardson is Hartman's faculty adviser.

Their report on the study will be published online this week by Friday in the Proceedings of the National Academy of Sciences.

Soils in undisturbed wetlands present harsh conditions, with elevated acidity and low oxygen and nutrient availability in which fewer bacterial groups can survive and grow, they explained. In comparison, former wetlands that have been drained, limed and fertilized for farming host greater soil bacterial diversity because they present conditions more suitable for bacterial growth.

"The bacterial communities in these fields almost resemble those found in wastewater treatment plants," Hartman noted.

Soil bacteria are essential to wetland functions that are critical to environmental quality, such as filtering nutrients and storing carbon. "The mixture of bacterial groups in wetland soils can reflect the status of wetland functioning, and the composition of these populations is as telling as their diversity," Richardson said.

Measuring whether the right mix of bacteria is returning to a restored wetland can be a valuable biological indicator scientists can use to evaluate restoration success, he added.

"We found that one of the simplest and most promising indicators of restoration success was the ratio of Proteobacteria, which have the highest affinity for nutrient-rich environments, to Acidobacteria, which have the highest tolerance for poor conditions," Hartman said.

The researchers determined soil bacterial composition and diversity within restored wetlands, agricultural fields and undisturbed wetlands across North Carolina's coastal plain. They sampled these paired land-use categories across three distinct types of wetlands: pocosin bogs, floodplain swamps and backwater swamps that were not connected to streams.

Samples were also taken from sections of the Everglades, the largest wetland in the United States, where a $10.9 billion effort is now underway to remediate the effects of agricultural runoff.

"We identified bacterial groups by their evolutionary relationships, which were determined by sequencing DNA extracted from soils," Hartman said. "This approach allowed us to capture a much greater diversity of bacteria than would be possible using conventional laboratory culturing, which works for only a small fraction of the 10,000 to 1 million species of bacteria that can be found in a single cubic centimeter of soil."

Previously, researchers have used genetic techniques to target known organisms or bacterial groups in wetland soils, he said. "But this study is unique in that we used these methods to capture the full range of bacterial groups present, and determine how their composition shifts with land-use changes and restoration."

"These types of findings can only be obtained in studies done on sites that have been restored and studied over a number of years and assessed with these modern techniques," Richardson said.

Wetlands filter and reduce nutrients and pollutants from agricultural and urban runoff as well as improve water quality and store around 25 percent of the world's soil carbon, while covering only 4 to 6 percent of its land mass.

More than half of original wetland acreage in the U.S. has been destroyed or degraded, but some has been restored in recent decades under the federal government's "no net loss" policy.

"Re-establishment of microbial communities indicates a restoration of the biological functions of soils. This study across a wide range of wetlands is the first to establish that shifts in soil bacteria populations may be a key marker of restoration success," Richardson said.


'/>"/>

Contact: Tim Lucas
tdlucas@duke.edu
919-613-8084
Duke University
Source:Eurekalert

Related biology news :

1. During exercise, the human brain shifts into high gear on alternative energy
2. Study links success of invasive Argentine ants to diet shifts
3. Nature study demonstrates that bacterial clotting depends on clustering
4. Predatory bacterial swarm uses rippling motion to reach prey
5. Gene against bacterial attack unravelled
6. Study reveals how viruses collectively decide the fate of a bacterial cell
7. New paper sheds light on bacterial cell wall recycling
8. Bacterial persistence in streams
9. A survivor in Greenland: A novel bacterial species is found trapped in 120,000-year-old ice
10. Bacterial slime helps cause serious disease
11. Tomato pathogen genome may offer clues about bacterial evolution
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:3/9/2017)... and MOUNTAIN VIEW, Calif. , ... Well Made Simple," and 23andMe , the leading ... better food choices.  Zipongo can now provide customers with ... preferences, health goals and biometrics, but also genetic markers ... choices. Zipongo,s personalized food decision support platform ...
(Date:3/2/2017)... Summary This report provides all the ... interests and activities since 2010. ... Read the full report: http://www.reportlinker.com/p03605615-summary/view-report.html ... report provides an in-depth insight into the partnering activity of ... On demand company reports are prepared upon purchase to ensure ...
(Date:3/1/2017)... , March 1, 2017  Aware, Inc. (NASDAQ: ... announced that Richard P. Moberg has resigned, ... co-President and Chief Financial Officer and Treasurer of Aware ... to serve as a member of the Board of ... , Aware,s co-Chief Executive Officer and co-President, General Counsel ...
Breaking Biology News(10 mins):
(Date:3/24/2017)... WESTLAKE VILLAGE, Calif. , March 24, 2017 /PRNewswire/ ... medical dermatology and aesthetics company, today announced that ... Financial Officer, effective March 24.   Peterson, who ... will succeed John Smither , who is retiring ... serve Sienna in an advisory capacity. Peterson joins Sienna ...
(Date:3/23/2017)... ... March 23, 2017 , ... AxioMed president, Jake Lubinski, ... elastic characteristics when deformed, which is identical to how the human discs work ... forces and return to its natural state along a hysteresis curve, exactly like ...
(Date:3/23/2017)... Research and Markets has announced the addition of the ... ... The Global Market for Bioproducts Should Reach $714.6 Billion by ... 8.9%, This research report quantifies the two ... segments: bio-derived chemicals, biofuels, pharmaceuticals (biodrugs and herbal/botanicals), biocomposite materials, ...
(Date:3/23/2017)... Mass. , March 23, 2017 /PRNewswire/ ... partner to global in vitro diagnostics manufacturers ... of the industry,s first multiplexed Inherited ... disease testing by next-generation sequencing (NGS). The ... were developed with input from industry experts ...
Breaking Biology Technology: