Navigation Links
Sharply focused on neurons, light controls a worm's behavior

CAMBRIDGE, Mass., Jan. 18, 2011 -- Physicists and bioengineers have developed an optical instrument allowing them to control the behavior of a worm just by shining a tightly focused beam of light at individual neurons inside the organism.

The pioneering optogenetic research, by a team at Harvard University, the University of Pennsylvania, and the University of Massachusetts Medical School, is described this week in the journal Nature Methods. Their device is known as the CoLBeRT (Controlling Locomotion and Behavior in Real Time) system for optical control of freely moving animals, in this case the millimeter-long worm Caenorhabditis elegans.

"This optical instrument allows us to commandeer the nervous system of swimming or crawling nematodes using pulses of blue and green light -- no wires, no electrodes," says Aravinthan D.T. Samuel, a professor of physics and affiliate of Harvard's Center for Brain Science. "We can activate or inactivate individual neurons or muscle cells, essentially turning the worm into a virtual biorobot."

Samuel and colleagues chose to work with C. elegans, an organism often used in biological research, because of its optical transparency, its well-defined nervous system of exactly 302 neurons, and its ease of manipulation. They genetically modified the worms so their neurons express the light-activated proteins channelrhodopsin-2 and halorhodopsin.

In conjunction with high-precision micromirrors that can direct laser light to individual cells, the scientists were then able to stimulate -- using blue light -- or inhibit -- using green light -- behaviors such as locomotion and egg-laying.

"If you shine blue light at a particular neuron near the front end of the worm, it perceives that as being touched and will back away," says co-author Andrew M. Leifer, a Ph.D. student in Harvard's Department of Physics and Center for Brain Science. "Similarly, blue light shined at the tail end of the modified worm will prompt it to move forward."

The scientists were also able to use pulses of light to steer the worms left or right. By stimulating neurons associated with the worm's reproductive system, they were even able to rouse the animal into secreting an egg.

Key to the CoLBeRT system is a tracking microscope recording the motion of a swimming or crawling worm, paired with image processing software that can quickly estimate the location of individual neurons and instruct a digital micromirror device to illuminate targeted cells. Because cells in an unrestrained worm represent a rapidly moving target, the system can capture 50 frames per second and attain spatial resolution of just 30 microns.

"This development should have profound consequences in systems neuroscience as a new tool to probe nervous system activity and behavior, as well as in bioengineering and biorobotics," Samuel says. "Our laboratory has been pioneering new optical methods to study the nervous system, and this is the latest, and perhaps our greatest, invention."


Contact: Steve Bradt
Harvard University

Related biology news :

1. Measurements of CO2 and CO in Chinas air indicate sharply improved combustion efficiency
2. Proposed dietary guidelines for Americans sharply debated
3. 7 CAMH scientists win Young Investigator awards focused on breakthrough research
4. NIH renews Nanomedicine Center focused on treating single-gene disorders for $16.1 million
5. NIH expands network focused on how genes affect drug responses
6. For ever and ever: When the wedding flight never ends
7. Ammonites last meal: New light on past marine food chains
8. New book highlights the cellular and molecular determinants of brain wiring
9. UNC scientists pinpoint link between light signal and circadian rhythms
10. Scripps scientists see the light in bizarre bioluminescent snail
11. Unlocking the secrets of a plants light sensitivity
Post Your Comments:
(Date:11/26/2015)... Nov. 26, 2015 Research and Markets ( ... "Capacitive Fingerprint Sensors - Technology and Patent Infringement Risk ... --> --> Fingerprint sensors using ... smartphones. The fingerprint sensor vendor Idex forecasts an increase ... in mobile devices and of the fingerprint sensor market ...
(Date:11/20/2015)... -- NXTD ) ("NXT-ID" or the "Company"), ... commerce market and creator of the Wocket® smart wallet, ... interviewed on The RedChip Money Report television ... Bloomberg Europe , Bloomberg Asia, Bloomberg Australia, and ... ) ("NXT-ID" or the "Company"), a biometric authentication company ...
(Date:11/19/2015)... 2015  Based on its in-depth analysis of the ... with the 2015 Global Frost & Sullivan Award for ... presents this award to the company that has developed ... of the market it serves. The award recognizes the ... on customer base demands, the overall impact it has ...
Breaking Biology News(10 mins):
(Date:11/25/2015)... PUNE, India , November 26, 2015 /PRNewswire/ ... The Global Biobanking Market 2016 - 2020 ... biobanks by maintaining integrity and quality in long-term ... and enabling long-term cost-effectiveness. Automation minimizes manual errors ... improves the technical efficiency. Further, it plays a ...
(Date:11/25/2015)... , November 25, 2015 Studies ... and human plaque and pave the way for more effective ... in cats     --> ... commonly diagnosed health problems in cats, yet relatively little was ... Two collaborative studies have been conducted by researchers from the ...
(Date:11/25/2015)... 25, 2015 /PRNewswire/ - Aeterna Zentaris Inc. (NASDAQ:  AEZS; ... and prospects remain fundamentally strong and highlights the ... recently received DSMB recommendation to continue the ZoptEC ... of the final interim efficacy and safety data ... in men with heavily pretreated castration- and Taxane-resistant ...
(Date:11/25/2015)... 2015 The Global Genomics ... professional and in-depth study on the current state ... ) , The report ... definitions, classifications, applications and industry chain structure. The ... markets including development trends, competitive landscape analysis, and ...
Breaking Biology Technology: