Navigation Links
Shaping up: Controlling a stem cell's form can determine its fate
Date:9/13/2011

"Form follows function!" was the credo of early 20th century architects making design choices based on the intended use of the structure. Cell biologists may be turning that on its head. New research* by a team working at the National Institute of Standards and Technology (NIST) reinforces the idea that stem cells can be induced to develop into specific types of cells solely by controlling their shape. The results may be important to the design of materials to induce the regeneration of lost or damaged tissues in the body.

Tissue engineering seeks to repair or re-grow damaged body tissues, often using some form of stem cells. Stem cells are basic repair units in the body that have the ability to develop into any of several different forms. The NIST experiments looked at primary human bone marrow stromal cells, adult stem cells that can be isolated from bone marrow and can "differentiate" into bone, fat or cartilage cells, depending.

"Depending on what?" is one of the key questions in tissue engineering. How do you ensure that the stem cells turn into the type you need? Chemical cues have been known to work in cases where researchers have identified the proper additivesa hormone in the case of bone cells. Other research has suggested that cell differentiation on flat surfaces can be controlled by patterning the surface to restrict the locations where growing cells can attach themselves.

The experiments at NIST are believed to be the first head-to-head comparison of five popular tissue scaffold designs to examine the effect of architecture alone on bone marrow cells without adding any biochemical supplements other than cell growth medium. The scaffolds, made of a biocompatible polymer, are meant to provide a temporary implant that gives cells a firm structure on which to grow and ultimately rebuild tissue. The experiment included structures made by leaching and foaming processes (resulting in microscopic structures looking like clumps of insect-eaten lettuce), freeform fabrication (like microscopic rods stacked in a crisscross pattern) and electrospun nanofibers (a random nest of thin fibers). Bone marrow stromal cells were cultured on each, then analyzed to see which were most effective at creating deposits of calciuma telltale of bone cell activity. Microarray analysis also was used to determine patterns of gene expression for the cultured cells.

The results show that the stem cells will differentiate quite efficiently on the nanofiber scaffoldseven without any hormone additivesbut not so on the other architectures. The distinction, says NIST biologist Carl Simon, Jr., seems to be shape. Mature bone cells are characteristically long and stringy with several extended branches. Of the five different scaffolds, only the nanofiber one, in effect, forces the cells to a similar shape, long and branched, as they try to find anchor points. Being in the shape of a bone cell seems to induce the cells to activate the genes that ultimately produce bone tissue.

"This suggests that a good strategy to design future scaffolds would be to take into account what shape you want to put the cells in," says Simon, adding, "That's kind of a tall order though, you'd have to understand a lot of stuff: how cell morphology influences cell behavior, and then how the three-dimensional structure can be used to control it." Despite the research still to be done on this method, the ability to physically direct cell differentiation by shape alone potentially would be simpler, cheaper and possibly safer than using biochemical supplements, he says.


'/>"/>

Contact: Michael Baum
baum@nist.gov
301-975-2763
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. Are the monoamines involved in shaping conduct disorders?
2. WIREs: Shaping the future of cognitive science
3. Shaping the future of the High Plains water supply
4. Hidden infections crucial to understanding, controlling disease outbreaks
5. bioMETRX, Inc. Signs Deal To Acquire Controlling Interest in Biometric Solutions, LLC
6. Brain enzyme may play key role in controlling appetite and weight gain
7. Controlling cucumber beetles organically
8. Probing and controlling molecular rattling may mean better preservatives
9. Grouping muscles to make controlling limbs easier
10. Photoselective film proves effective for controlling height in potted gardenia plants
11. Key protein regulating inflammation may prove relevant to controlling sepsis
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Shaping up: Controlling a stem cell's form can determine its fate
(Date:3/31/2016)... R.I. , March 31, 2016  Genomics firm ... of founding CEO, Barrett Bready , M.D., who ... members of the original technical leadership team, including Chief ... President of Product Development, Steve Nurnberg and Vice President ... returned to the company. Dr. Bready served ...
(Date:3/23/2016)... March 23, 2016 ... Sicherheit Gesichts- und Stimmerkennung mit Passwörtern ... (NASDAQ: MESG ), ein führender Anbieter ... Unternehmen mit SpeechPro zusammenarbeitet, um erstmals dessen ... wird die Möglichkeit angeboten, im Rahmen mobiler ...
(Date:3/22/2016)... Ontario , PROVO and ... Newborn Screening Ontario (NSO), which operates the ... for molecular testing, and Tute Genomics and UNIConnect, ... management technology respectively, today announced the launch of a ... next-generation sequencing (NGS) testing panel. NSO ...
Breaking Biology News(10 mins):
(Date:6/24/2016)... ... June 24, 2016 , ... While the majority of commercial spectrophotometers and fluorometers ... the 6000i models are higher end machines that use the more unconventional z-dimension of ... beam from the bottom of the cuvette holder. , FireflySci has developed several ...
(Date:6/23/2016)... 2016 /PRNewswire/ - FACIT has announced the creation ... biotechnology company, Propellon Therapeutics Inc. ("Propellon" or "the ... a portfolio of first-in-class WDR5 inhibitors for the ... WDR5 represent an exciting class of therapies, possessing ... for cancer patients. Substantial advances have been achieved ...
(Date:6/23/2016)... 2016  The Biodesign Challenge (BDC), a university competition ... harness living systems and biotechnology, announced its winning teams ... New York City . The ... projects at MoMA,s Celeste Bartos Theater during the daylong ... senior curator of architecture and design, and Suzanne ...
(Date:6/23/2016)... Apellis Pharmaceuticals, Inc. today announced positive ... its complement C3 inhibitor, APL-2. The trials were ... studies designed to assess the safety, tolerability, pharmacokinetics ... healthy adult volunteers. Forty subjects were ... dose (ranging from 45 to 1,440mg) or repeated ...
Breaking Biology Technology: