Navigation Links
Shape-sifting: NIST categorizes bio scaffolds by characteristic cell shapes
Date:2/7/2014

Getting in the right shape might be just as important in a biology lab as a gym. Shape is thought to play an important role in the effectiveness of cells grown to repair or replace damaged tissue in the body. To help design new structures that enable cells to "shape up," researchers at the National Institute of Standards and Technology (NIST) have come up with a way to measure, and more importantly, classify, the shapes cells tend to take in different environments.*

With the notable exception of Flat Stanley, we all live, and are shaped by, a 3-dimensional world. Biologists have accepted that this dimensional outlook is just as important to growing cells. A key challenge in tissue engineeringthe engineering of living cells to grow into replacement or repair tissues such as bone, heart muscle, blood vessels or cartilageis creating 3-D scaffolds to support the cells as they grow and provide an appropriate environment so that they develop into viable tissue.**

This, says NIST materials scientist Carl Simon, has led to a large and rapidly expanding collection of possible 3D scaffolds, ranging from relatively simple gels made of collagen, the body's natural structural matrix, to structured or unstructured arrangements of polymer fibers, hydrogels and many more.

"What we're trying to measure," Simon explains, "is 'what is 3D in this context?' Presumably, a scaffold provides some sort of microenvironmenta niche that allows a cell to adopt the normal 3D morphology that it would have in the body. But you can't measure the niche because that's sort of an amorphous, ill-defined concept. So, we decided to measure cell shape and see how that changes, if it becomes more 3D in the scaffold."

The NIST team made painstaking measurements of individual cells in a variety of typical scaffolds using a confocal microscope, an instrument that can make highly detailed, 3-dimensional images of a target, albeit with very lengthy exposure times. They then used a mathematical technique"gyration tensors"to reduce each cell's shape to a characteristic ellipsoid. Ellipsoids can range in shape from points or spheres to flat ellipses or elongated sticks to something like an American football.

Analyzing the ellipsoid collection allowed them to categorize average cell shapes by scaffold. Cells in collagen gels and some fiber scaffolds, for example, tend toward a 1-dimensional rod shape. Other scaffolds promoted 2-dimensional disks, while a synthetic gel using a material called PEGTM* seems to encourage spheres.

"This technique," says Simon, "gives you a way to compare these different scaffolds. There are hundreds of scaffolds being advanced. It's hard to know how they differ with respect to cell morphology. By looking at the cell shape in 3D with this approach, you can compare them. You can say this one makes the cells more 3-dimensional, or this one makes the cells more like they would develop in collagen, depending on what you want. "


'/>"/>

Contact: Michael Baum
michael.baum@nist.gov
301-975-2763
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. Nanoscale scaffolds and stem cells show promise in cartilage repair
2. Slice, stack, and roll: A new way to build collagen scaffolds
3. 3-D biomimetic scaffolds support regeneration of complex tissues from stem cells
4. Female mice exposed to BPA by mothers show unexpected characteristics
5. Juniper essential oil characteristics determined
6. Unique new dataset CLIMBER: Climatic niche characteristics of the butterflies in Europe
7. Not a 1-way street: Evolution shapes environment of Connecticut lakes
8. Oh, my stars and hexagons! DNA code shapes gold nanoparticles
9. New geometries: Researchers create new shapes of artificial microcompartments
10. Epigenetics shapes fate of brain vs. brawn castes in carpenter ants
11. The genomes 3-D structure shapes how genes are expressed
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Shape-sifting: NIST categorizes bio scaffolds by characteristic cell shapes
(Date:5/16/2016)... 16, 2016   EyeLock LLC , a market ... opening of an IoT Center of Excellence in ... the development of embedded iris biometric applications. ... convenience and security with unmatched biometric accuracy, making it ... from DNA. EyeLock,s platform uses video technology to deliver ...
(Date:5/9/2016)... UAE, May 9, 2016 Elevay ... comes to expanding freedom for high net worth professionals ... in today,s globally connected world, there is still no ... could ever duplicate sealing your deal with a firm ... passports by taking advantage of citizenship via investment programs ...
(Date:4/28/2016)... FRANCISCO and BANGALORE, India , ... of EdgeVerve Systems, a product subsidiary of Infosys (NYSE: ... provider, today announced a global partnership that will ... way to use mobile banking and payment services. ... is a key innovation area for financial services, but it ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... June 23, 2016 Houston Methodist Willowbrook ... Cy-Fair Sports Association to serve as their official ... Houston Methodist Willowbrook will provide sponsorship support, athletic ... with association coaches, volunteers, athletes and families. ... Cy-Fair Sports Association and to bring Houston Methodist ...
(Date:6/23/2016)... , June 23, 2016   EpiBiome , ... secured $1 million in debt financing from Silicon Valley ... up automation and to advance its drug development efforts, ... new facility. "SVB has been an incredible ... the services a traditional bank would provide," said Dr. ...
(Date:6/23/2016)... 2016 Apellis Pharmaceuticals, Inc. today announced ... of its complement C3 inhibitor, APL-2. The trials ... dose studies designed to assess the safety, tolerability, ... in healthy adult volunteers. Forty subjects ... single dose (ranging from 45 to 1,440mg) or ...
(Date:6/23/2016)... ... June 23, 2016 , ... ClinCapture, the only ... Center and will showcase its product’s latest features from June 26 to June ... scientific poster on Disrupting Clinical Trials in The Cloud during the conference. ...
Breaking Biology Technology: