Navigation Links
Shape-sifting: NIST categorizes bio scaffolds by characteristic cell shapes
Date:2/7/2014

Getting in the right shape might be just as important in a biology lab as a gym. Shape is thought to play an important role in the effectiveness of cells grown to repair or replace damaged tissue in the body. To help design new structures that enable cells to "shape up," researchers at the National Institute of Standards and Technology (NIST) have come up with a way to measure, and more importantly, classify, the shapes cells tend to take in different environments.*

With the notable exception of Flat Stanley, we all live, and are shaped by, a 3-dimensional world. Biologists have accepted that this dimensional outlook is just as important to growing cells. A key challenge in tissue engineeringthe engineering of living cells to grow into replacement or repair tissues such as bone, heart muscle, blood vessels or cartilageis creating 3-D scaffolds to support the cells as they grow and provide an appropriate environment so that they develop into viable tissue.**

This, says NIST materials scientist Carl Simon, has led to a large and rapidly expanding collection of possible 3D scaffolds, ranging from relatively simple gels made of collagen, the body's natural structural matrix, to structured or unstructured arrangements of polymer fibers, hydrogels and many more.

"What we're trying to measure," Simon explains, "is 'what is 3D in this context?' Presumably, a scaffold provides some sort of microenvironmenta niche that allows a cell to adopt the normal 3D morphology that it would have in the body. But you can't measure the niche because that's sort of an amorphous, ill-defined concept. So, we decided to measure cell shape and see how that changes, if it becomes more 3D in the scaffold."

The NIST team made painstaking measurements of individual cells in a variety of typical scaffolds using a confocal microscope, an instrument that can make highly detailed, 3-dimensional images of a target, albeit with very lengthy exposure times. They then used a mathematical technique"gyration tensors"to reduce each cell's shape to a characteristic ellipsoid. Ellipsoids can range in shape from points or spheres to flat ellipses or elongated sticks to something like an American football.

Analyzing the ellipsoid collection allowed them to categorize average cell shapes by scaffold. Cells in collagen gels and some fiber scaffolds, for example, tend toward a 1-dimensional rod shape. Other scaffolds promoted 2-dimensional disks, while a synthetic gel using a material called PEGTM* seems to encourage spheres.

"This technique," says Simon, "gives you a way to compare these different scaffolds. There are hundreds of scaffolds being advanced. It's hard to know how they differ with respect to cell morphology. By looking at the cell shape in 3D with this approach, you can compare them. You can say this one makes the cells more 3-dimensional, or this one makes the cells more like they would develop in collagen, depending on what you want. "


'/>"/>

Contact: Michael Baum
michael.baum@nist.gov
301-975-2763
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. Nanoscale scaffolds and stem cells show promise in cartilage repair
2. Slice, stack, and roll: A new way to build collagen scaffolds
3. 3-D biomimetic scaffolds support regeneration of complex tissues from stem cells
4. Female mice exposed to BPA by mothers show unexpected characteristics
5. Juniper essential oil characteristics determined
6. Unique new dataset CLIMBER: Climatic niche characteristics of the butterflies in Europe
7. Not a 1-way street: Evolution shapes environment of Connecticut lakes
8. Oh, my stars and hexagons! DNA code shapes gold nanoparticles
9. New geometries: Researchers create new shapes of artificial microcompartments
10. Epigenetics shapes fate of brain vs. brawn castes in carpenter ants
11. The genomes 3-D structure shapes how genes are expressed
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Shape-sifting: NIST categorizes bio scaffolds by characteristic cell shapes
(Date:3/20/2017)... , March 20, 2017 At this year,s ... -based biometrics manufacturer DERMALOG. The Chancellor came to the DERMALOG stand ... is this year,s CeBIT partner country. At the largest German biometrics ... in use: fingerprint, face and iris recognition as well as DERMALOGĀ“s multi-biometrics ... ...
(Date:3/9/2017)... SAN FRANCISCO and MOUNTAIN VIEW, ... Zipongo , "Eating Well Made Simple," and 23andMe ... to help guide better food choices.  Zipongo can now ... only their food preferences, health goals and biometrics, but ... to certain food choices. Zipongo,s personalized food ...
(Date:3/2/2017)... Summary This report provides all ... and its partnering interests and activities since 2010. ... The Partnering Deals and Alliance since 2010 report provides ... of the world,s leading life sciences companies. ... ensure inclusion of the most up to date deal ...
Breaking Biology News(10 mins):
(Date:3/22/2017)... , March 22, 2017  Ascendis Pharma A/S ... innovative TransCon technology to address significant unmet medical ... for the full year ended December 31, 2016. ... for our company as we broadened our pipeline ... integrated rare disease company with an initial focus ...
(Date:3/22/2017)... LEXINGTON, Mass. , March 22, 2017   ... collections, today announced that Doctors Pathology Service ... mid-Atlantic region of the United States ... the Delaware Health Information Network (DHIN) to ... researchers. The novel program, announced in ...
(Date:3/22/2017)... 2017   Boston Biomedical , an industry leader ... target cancer stemness pathways, today announced its Board of ... Chief Executive Officer, effective April 24, 2017. ... , M.D., FACP, who has led Boston Biomedical since ... leadership, Boston Biomedical has grown from a "garage startup" ...
(Date:3/22/2017)... ... 21, 2017 , ... Proper glycosylation is critical for the ... and/or decrease in antibody-dependent cellular cytotoxicity or complement-dependent cytotoxicity, there is a growing ... , To meet this demand, the team at SCIEX has developed a Fast ...
Breaking Biology Technology: