Navigation Links
Shape-sifting: NIST categorizes bio scaffolds by characteristic cell shapes
Date:2/7/2014

Getting in the right shape might be just as important in a biology lab as a gym. Shape is thought to play an important role in the effectiveness of cells grown to repair or replace damaged tissue in the body. To help design new structures that enable cells to "shape up," researchers at the National Institute of Standards and Technology (NIST) have come up with a way to measure, and more importantly, classify, the shapes cells tend to take in different environments.*

With the notable exception of Flat Stanley, we all live, and are shaped by, a 3-dimensional world. Biologists have accepted that this dimensional outlook is just as important to growing cells. A key challenge in tissue engineeringthe engineering of living cells to grow into replacement or repair tissues such as bone, heart muscle, blood vessels or cartilageis creating 3-D scaffolds to support the cells as they grow and provide an appropriate environment so that they develop into viable tissue.**

This, says NIST materials scientist Carl Simon, has led to a large and rapidly expanding collection of possible 3D scaffolds, ranging from relatively simple gels made of collagen, the body's natural structural matrix, to structured or unstructured arrangements of polymer fibers, hydrogels and many more.

"What we're trying to measure," Simon explains, "is 'what is 3D in this context?' Presumably, a scaffold provides some sort of microenvironmenta niche that allows a cell to adopt the normal 3D morphology that it would have in the body. But you can't measure the niche because that's sort of an amorphous, ill-defined concept. So, we decided to measure cell shape and see how that changes, if it becomes more 3D in the scaffold."

The NIST team made painstaking measurements of individual cells in a variety of typical scaffolds using a confocal microscope, an instrument that can make highly detailed, 3-dimensional images of a target, albeit with very lengthy exposure times. They then used a mathematical technique"gyration tensors"to reduce each cell's shape to a characteristic ellipsoid. Ellipsoids can range in shape from points or spheres to flat ellipses or elongated sticks to something like an American football.

Analyzing the ellipsoid collection allowed them to categorize average cell shapes by scaffold. Cells in collagen gels and some fiber scaffolds, for example, tend toward a 1-dimensional rod shape. Other scaffolds promoted 2-dimensional disks, while a synthetic gel using a material called PEGTM* seems to encourage spheres.

"This technique," says Simon, "gives you a way to compare these different scaffolds. There are hundreds of scaffolds being advanced. It's hard to know how they differ with respect to cell morphology. By looking at the cell shape in 3D with this approach, you can compare them. You can say this one makes the cells more 3-dimensional, or this one makes the cells more like they would develop in collagen, depending on what you want. "


'/>"/>

Contact: Michael Baum
michael.baum@nist.gov
301-975-2763
National Institute of Standards and Technology (NIST)
Source:Eurekalert  

Related biology news :

1. Nanoscale scaffolds and stem cells show promise in cartilage repair
2. Slice, stack, and roll: A new way to build collagen scaffolds
3. 3-D biomimetic scaffolds support regeneration of complex tissues from stem cells
4. Female mice exposed to BPA by mothers show unexpected characteristics
5. Juniper essential oil characteristics determined
6. Unique new dataset CLIMBER: Climatic niche characteristics of the butterflies in Europe
7. Not a 1-way street: Evolution shapes environment of Connecticut lakes
8. Oh, my stars and hexagons! DNA code shapes gold nanoparticles
9. New geometries: Researchers create new shapes of artificial microcompartments
10. Epigenetics shapes fate of brain vs. brawn castes in carpenter ants
11. The genomes 3-D structure shapes how genes are expressed
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Shape-sifting: NIST categorizes bio scaffolds by characteristic cell shapes
(Date:4/24/2017)... WASHINGTON , April 24, 2017 ... counsel and partner with  Identity Strategy Partners, LLP ... "With or without President Trump,s March 6, ... Foreign Terrorist Entry , refugee vetting can be instilled ... refugee resettlement. (Right now, all refugee applications are ...
(Date:4/19/2017)... New York , April 19, 2017 ... competitive, as its vendor landscape is marked by the ... the market is however held by five major players ... Safran. Together these companies accounted for nearly 61% of ... of the leading companies in the global military biometrics ...
(Date:4/18/2017)... a global expert in SoC-based imaging and computing solutions, has developed ... the company,s hybrid codec technology. A demonstration utilizing TeraFaces ® , ... showcased during the upcoming Medtec Japan at Tokyo Big Sight April ... Vegas Convention Center April 24-27. ... Click here for an image of the M820 ...
Breaking Biology News(10 mins):
(Date:4/28/2017)... , ... April 28, 2017 , ... ... regulatory compliance requirements for life science products comes to New Orleans, Philadelphia and ... the regulatory agencies in Latin America and discuss local cultural nuances for working ...
(Date:4/28/2017)... , ... April 28, 2017 , ... Cynvenio Biosystems, ... launch of a new neoadjuvant breast cancer monitoring (NEAT) study in partnership with Allentown, ... centers and over 150 patients to be monitored over two years with Cynvenio’s ClearID ...
(Date:4/28/2017)... ... 28, 2017 , ... While things have been quiet for EcoloCap over the ... a new outlook for the future. As a continued effort to bring innovative ... retirement of Mr. Siegel as CEO. With the new adjustments in management, EcoloCap has ...
(Date:4/28/2017)... , ... April 28, 2017 , ... ... organization (CRO) has validated a 0.2 ng/mL lower limit (LLOQ) assay for nicotine ... 0.5 ng/mL LLOQ assay, the ultra-low trace nicotine assay meets additional needs of ...
Breaking Biology Technology: