Navigation Links
Severe scoliosis linked to rare mutations
Date:6/13/2014

Children with rare mutations in two genes are about four times more likely to develop severe scoliosis than their peers with normal versions of the genes, scientists have found. The research at Washington University School of Medicine in St. Louis has identified genetic risk factors that predispose children to develop s-shaped curves in their spines that are dramatic enough to require surgery.

"We've had a difficult time finding ways to predict who will develop severe scoliosis, and these newly identified mutations have the potential to be very helpful," said senior author Christina A. Gurnett, MD, PhD.

The findings appear online in Human Molecular Genetics.

Drugs currently in clinical trials block a major growth pathway that these mutated genes, fibrillin-1 and fibrillin-2, control. If the same pathway is involved in scoliosis, doctors might be able to use these drugs to prevent scoliosis in some children with these mutations.

One to 3 percent of the general population has some mild curvature of the spine. In about one in 10,000 children, scoliosis will produce curvature so pronounced that it requires corrective surgery.

"These children often don't have any curvature of the spine early in adolescence, but then they go through a growth spurt, and that's when the curve appears," said Gurnett, associate professor of neurology. "Others have tried to predict severe disease using gender, age of onset and type of spine curve but haven't been very successful."

In 91 patients with acute scoliosis, the scientists sequenced the portions of the patients' DNA that encode proteins.

The most consistently mutated gene in the group was fibrillin-1, which makes a protein important to the tissues that connect many components of the body. A related gene, fibrillin-2, also often was mutated.

Additional sequencing of those genes in 852 patients with scoliosis and 669 subjects with healthy spines revealed that patients with specific mutations in both fibrillin-1 and fibrillin-2 had four times the risk of severe scoliosis than people without the genetic errors. The researchers used a new cost-effective method they developed that reduced the cost of sequencing each patient's genes to about $30 from $3,000-4,000.

To date, scientists have identified more than 600 mutations in fibrillin-1. Among the most serious are the mutations that produce Marfan syndrome, a condition that can cause the long bones of the body to overgrow and can weaken the body's connective tissue.

"Some variants of this important gene are associated with unusual tallness," Gurnett said. "There appears to be a spectrum of effects caused by changes in the gene, from simple alterations in height to severe scoliosis to more life-threatening conditions such as Marfan syndrome."

Clinical trials are underway in patients with Marfan syndrome to see whether drugs that block TGF-beta, a growth pathway controlled by fibrillin-1, can help treat the disorder. Gurnett and her colleagues are watching to see if the drugs affect growth of the spine. If they do, researchers may investigate using them to prevent scoliosis.

The researchers continue to look for additional genetic risk factors.

"We're very confident that genetic studies are going to open up new avenues for diagnosis and treatment of scoliosis," said coauthor Matthew Dobbs, MD, professor of orthopaedic surgery, who treats patients at St. Louis Children's Hospital and Shriners Hospital.

"We want to create a genetic testing panel that we can use to more accurately predict who will need treatment," Gurnett said. "If we can develop effective treatments and apply them early enough, we might one day be able to prevent the need for surgeries."


'/>"/>

Contact: Michael C. Purdy
purdym@wustl.edu
314-286-0122
Washington University School of Medicine
Source:Eurekalert  

Related biology news :

1. Stem cell therapy may help severe congestive heart failure
2. Young, unvaccinated adults account for severest flu cases
3. Low vitamin D levels during pregnancy may increase risk of severe preeclampsia
4. European epilepsy consortium identifies new gene for severe childhood epilepsy
5. Nature study discovers chromosome therapy to correct a severe chromosome defect
6. Novel gene variant found in severe childhood asthma
7. Sheeps mucosa shows the way to more effective medicine for severe neurological diseases
8. Bladder function restored in animals with severe spinal cord injury
9. New virus isolated from patients with severe brain infections
10. A majority on Earth face severe self-inflicted water woes within 2 generations: Scientists
11. Haiti cholera mutations could lead to more severe disease
Post Your Comments:
*Name:
*Comment:
*Email:
Related Image:
Severe scoliosis linked to rare mutations
(Date:2/10/2017)... 10, 2017 Research and Markets ... "Personalized Medicine - Scientific and Commercial Aspects" to their ... ... is integrated with therapy for selection of treatment as well ... and prevention of disease in modern medicine. Biochip/microarray technologies and ...
(Date:2/8/2017)... 2017 The biometrics market has reached ... of organizations, desires to better authenticate or identify ... and challenge questions), biometrics is quickly working its ... market is driven by use cases, though there ... enterprise uses cases, with consumer-facing use cases encompassing ...
(Date:2/6/2017)... DENVER , Feb. 6, 2017 ... national security are driving border authorities to continue ... Acuity reports there are 2143 Automated Border Control ... Kiosks currently deployed at more than 163 ports ... between 2013 to 2016 achieving a combined CAGR ...
Breaking Biology News(10 mins):
(Date:2/22/2017)... SAN DIEGO , Feb. 22, 2017 ... announced today expansion of its translational research program ... through establishment of laboratory facilities in San Diego.  ... San Diego BioLabs facility, a biotechnology incubator sponsored ... Sanofi. In November 2016, the Company ...
(Date:2/21/2017)... , Feb. 21, 2017 Synthetic Biologics, Inc. ... to preserve the microbiome to protect and restore the health of ... year ended December 31, 2016 on Thursday, March 2, 2017, and ... EST. The dial-in information for the call is as follows: ... ...
(Date:2/21/2017)... ... February 21, 2017 , ... During HIMSS ... digital health applications, announced a partnership with Redox, a leader in cloud-based healthcare ... many clinical systems while keeping data secure in the cloud. , The digital ...
(Date:2/21/2017)... ... February 21, 2017 , ... Genedata, a leading provider of ... the establishment of Genedata Limited as a new subsidiary in the United Kingdom. ... life science informatics. Creating the UK subsidiary reinforces Genedata’s commitment to collaborate closely ...
Breaking Biology Technology: