Navigation Links
Sensory experience and rest control survival of newborn neurons in adults

When it comes to the circuits that make up the olfactory system, it seems that less is more. Much like the addition and elimination of extra synapses that helps fine-tune brain circuitry, the olfactory system continues to produce and remove neurons throughout life. Yet it is not entirely clear how and why some newborn neurons are preserved while others are eliminated. Now, new research published by Cell Press in the September 8 issue of the journal Neuron reveals that both olfactory experience during feeding and a subsequent period of rest contribute to both the likelihood that a new olfactory neuron will escape elimination and be incorporated into existing circuitry.

In mice, olfactory neurons called "granule cells" are generated and incorporated into the neuronal circuitry from birth through adulthood. About half of these neurons are integrated into existing circuitry, while the other half are eliminated through a process called apoptosis. The mechanisms that underlie the selection process are not well understood, though some clues have come from studies showing that synaptic elimination associated with memory and learning depends on the sleep-wake cycle.

A research group led by senior study author Dr. Masahiro Yamaguchi from the University of Tokyo examined whether distinct behavioral periods might also impact plasticity in the olfactory system. "We were interested in determining whether the selection of adult-born granule cells in the olfactory bulb occurs continuously throughout the day or whether it occurs in association with specific behavioral states," explains Dr. Yamaguchi.

Using a combination of behavioral analysis and a staining technique that allowed detection of apoptotic cells, Dr. Yamaguchi and colleagues observed that extensive elimination of adult-born granule cells occurred during the period immediately after the mice had eaten, a time during which the mice engaged in typical post-meal behaviors such as rest, extended grooming, and sleep. Interestingly, when these behaviors were disrupted, apoptosis was prevented. The researchers also observed that the extent of apoptosis was regulated by prior olfactory sensory experience. Sensory deprivation (occlusion of one nostril) enhanced granule cell apoptosis specifically during the time period after feeding. The authors suggest that sensory experience thus serves to "tag" key synapses and prevent them from being eliminated during subsequent sleep.

"Our results suggest that extensive structural reorganization of the circuitry in the olfactory bulb occurs during the period after feeding and that this reorganization reflects sensory experience from the preceding waking period," concludes Dr. Yamaguchi. "Complex mechanisms of experience-dependent reorganization in the olfactory bulb will likely be revealed in the framework of two sequential behavioral periods, the waking period with olfactory behavior and the rest/sleep period that follows olfactory behavior."


Contact: Elisabeth (Lisa) Lyons
Cell Press

Related biology news :

1. New perspectives on sensory mechanisms
2. For hearing parts of brain, deafness reorganizes sensory inputs, not behavioral function
3. Hearing colors, seeing sounds: New research explores sensory overlap in the brain
4. Tuning into cell signals that tell where sensory organs will form inside the ear
5. Researchers demystifying complex cellular communications hubs found in sensory neurons
6. NIDCD-funded chemosensory researchers present findings at AChemS 2010 Meeting
7. Researchers equip robot sub with sensory system inspired by blind fish
8. Diffusion of a soluble protein through a sensory cilium
9. Chloride increases response to pheromones and odors in mouse sensory neurons
10. Researchers finds hidden sensory system in the skin
11. PRS And EmSense Partner To Integrate Bio-Sensory Measures In Packaging Research Studies
Post Your Comments:
(Date:4/28/2016)... and BANGALORE, India , April 28, ... Systems, a product subsidiary of Infosys (NYSE: INFY ... announced a global partnership that will provide end ... use mobile banking and payment services.      (Logo: ... key innovation area for financial services, but it also plays ...
(Date:4/19/2016)... 2016 The new GEZE SecuLogic ... web-based "all-in-one" system solution for all door components. It ... the door interface with integration authorization management system, and ... The minimal dimensions of the access control and the ... installations offer considerable freedom of design with regard to ...
(Date:4/13/2016)... , April 13, 2016  IMPOWER physicians supporting Medicaid ... setting a new clinical standard in telehealth thanks to ... leveraging the higi platform, IMPOWER patients can routinely track ... and body mass index, and, when they opt in, ... convenient visit to a local retail location at no ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, ... of the Supplyframe Design Lab . Located in Pasadena, Calif., the Design ... of how hardware projects are designed, built and brought to market. , The ...
(Date:6/23/2016)... BEACH, Calif. , June 23, 2016  Blueprint ... new biological discoveries to the medical community, has closed ... co-founder Matthew Nunez . "We have ... us with the capital we need to meet our ... will essentially provide us the runway to complete validation ...
(Date:6/23/2016)... ... June 23, 2016 , ... Regulatory ... technical consulting, provides a free webinar on Performing Quality Investigations: Getting ... at 12pm CT at no charge. , Incomplete investigations are still a major ...
(Date:6/22/2016)... June 22, 2016 Cell Applications, Inc. ... them to produce up to one billion human ... within one week. These high-quality, consistent stem cells ... cells and spend more time doing meaningful, relevant ... proprietary, high-volume manufacturing process that produces affordable, reliable ...
Breaking Biology Technology: