Navigation Links
Sensory experience and rest control survival of newborn neurons in adults
Date:9/7/2011

When it comes to the circuits that make up the olfactory system, it seems that less is more. Much like the addition and elimination of extra synapses that helps fine-tune brain circuitry, the olfactory system continues to produce and remove neurons throughout life. Yet it is not entirely clear how and why some newborn neurons are preserved while others are eliminated. Now, new research published by Cell Press in the September 8 issue of the journal Neuron reveals that both olfactory experience during feeding and a subsequent period of rest contribute to both the likelihood that a new olfactory neuron will escape elimination and be incorporated into existing circuitry.

In mice, olfactory neurons called "granule cells" are generated and incorporated into the neuronal circuitry from birth through adulthood. About half of these neurons are integrated into existing circuitry, while the other half are eliminated through a process called apoptosis. The mechanisms that underlie the selection process are not well understood, though some clues have come from studies showing that synaptic elimination associated with memory and learning depends on the sleep-wake cycle.

A research group led by senior study author Dr. Masahiro Yamaguchi from the University of Tokyo examined whether distinct behavioral periods might also impact plasticity in the olfactory system. "We were interested in determining whether the selection of adult-born granule cells in the olfactory bulb occurs continuously throughout the day or whether it occurs in association with specific behavioral states," explains Dr. Yamaguchi.

Using a combination of behavioral analysis and a staining technique that allowed detection of apoptotic cells, Dr. Yamaguchi and colleagues observed that extensive elimination of adult-born granule cells occurred during the period immediately after the mice had eaten, a time during which the mice engaged in typical post-meal behaviors such as rest, extended grooming, and sleep. Interestingly, when these behaviors were disrupted, apoptosis was prevented. The researchers also observed that the extent of apoptosis was regulated by prior olfactory sensory experience. Sensory deprivation (occlusion of one nostril) enhanced granule cell apoptosis specifically during the time period after feeding. The authors suggest that sensory experience thus serves to "tag" key synapses and prevent them from being eliminated during subsequent sleep.

"Our results suggest that extensive structural reorganization of the circuitry in the olfactory bulb occurs during the period after feeding and that this reorganization reflects sensory experience from the preceding waking period," concludes Dr. Yamaguchi. "Complex mechanisms of experience-dependent reorganization in the olfactory bulb will likely be revealed in the framework of two sequential behavioral periods, the waking period with olfactory behavior and the rest/sleep period that follows olfactory behavior."


'/>"/>

Contact: Elisabeth (Lisa) Lyons
elyons@cell.com
617-386-2121
Cell Press
Source:Eurekalert

Related biology news :

1. New perspectives on sensory mechanisms
2. For hearing parts of brain, deafness reorganizes sensory inputs, not behavioral function
3. Hearing colors, seeing sounds: New research explores sensory overlap in the brain
4. Tuning into cell signals that tell where sensory organs will form inside the ear
5. Researchers demystifying complex cellular communications hubs found in sensory neurons
6. NIDCD-funded chemosensory researchers present findings at AChemS 2010 Meeting
7. Researchers equip robot sub with sensory system inspired by blind fish
8. Diffusion of a soluble protein through a sensory cilium
9. Chloride increases response to pheromones and odors in mouse sensory neurons
10. Researchers finds hidden sensory system in the skin
11. PRS And EmSense Partner To Integrate Bio-Sensory Measures In Packaging Research Studies
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:4/6/2017)... LONDON , April 6, 2017 ... Control, RFID, ANPR, Document Readers, by End-Use (Transportation & ... Energy Facility, Oil, Gas & Fossil Generation Facility, Nuclear ... Healthcare, Educational, Other) Are you looking for ... Authentication sector? ...
(Date:4/5/2017)... April 4, 2017 KEY FINDINGS ... expand at a CAGR of 25.76% during the forecast ... the primary factor for the growth of the stem ... https://www.reportbuyer.com/product/4807905/ MARKET INSIGHTS The global stem cell ... application, and geography. The stem cell market of the ...
(Date:3/30/2017)... March 30, 2017  On April 6-7, 2017, Sequencing.com ... Genome hackathon at Microsoft,s headquarters in ... will focus on developing health and wellness apps that ... Hack the Genome is the first hackathon for ... world,s largest companies in the genomics, tech and health ...
Breaking Biology News(10 mins):
(Date:10/11/2017)... and LAGUNA HILLS, Calif. , Oct. 11, ... Research, London (ICR) and University of ... SkylineDx,s prognostic tool to risk-stratify patients with multiple myeloma (MM), ... nine . The University of Leeds ... funded by Myeloma UK, and ICR will perform the testing ...
(Date:10/11/2017)... ... 11, 2017 , ... Singh Biotechnology today announced that the ... its novel anti-STAT3 (Signal Transducer and Activator of Transcription 3) B VHH13 single ... the cell membrane and bind intracellular STAT3 and inhibit its function. Dysregulation of ...
(Date:10/10/2017)... Philadelphia, PA (PRWEB) , ... October 10, 2017 ... ... University City Science Center’s FirstHand program has won a US2020 STEM Mentoring Award. ... accept the award for Excellence in Volunteer Experience from US2020. , US2020’s mission ...
(Date:10/10/2017)... SomaGenics announced the receipt of a Phase ... (Single Cell), expected to be the first commercially available ... from single cells using NGS methods. The NIH,s recent ... development of approaches to analyze the heterogeneity of cell ... for measuring levels of mRNAs in individual cells have ...
Breaking Biology Technology: