Navigation Links
Sensory experience and rest control survival of newborn neurons in adults
Date:9/7/2011

When it comes to the circuits that make up the olfactory system, it seems that less is more. Much like the addition and elimination of extra synapses that helps fine-tune brain circuitry, the olfactory system continues to produce and remove neurons throughout life. Yet it is not entirely clear how and why some newborn neurons are preserved while others are eliminated. Now, new research published by Cell Press in the September 8 issue of the journal Neuron reveals that both olfactory experience during feeding and a subsequent period of rest contribute to both the likelihood that a new olfactory neuron will escape elimination and be incorporated into existing circuitry.

In mice, olfactory neurons called "granule cells" are generated and incorporated into the neuronal circuitry from birth through adulthood. About half of these neurons are integrated into existing circuitry, while the other half are eliminated through a process called apoptosis. The mechanisms that underlie the selection process are not well understood, though some clues have come from studies showing that synaptic elimination associated with memory and learning depends on the sleep-wake cycle.

A research group led by senior study author Dr. Masahiro Yamaguchi from the University of Tokyo examined whether distinct behavioral periods might also impact plasticity in the olfactory system. "We were interested in determining whether the selection of adult-born granule cells in the olfactory bulb occurs continuously throughout the day or whether it occurs in association with specific behavioral states," explains Dr. Yamaguchi.

Using a combination of behavioral analysis and a staining technique that allowed detection of apoptotic cells, Dr. Yamaguchi and colleagues observed that extensive elimination of adult-born granule cells occurred during the period immediately after the mice had eaten, a time during which the mice engaged in typical post-meal behaviors such as rest, extended grooming, and sleep. Interestingly, when these behaviors were disrupted, apoptosis was prevented. The researchers also observed that the extent of apoptosis was regulated by prior olfactory sensory experience. Sensory deprivation (occlusion of one nostril) enhanced granule cell apoptosis specifically during the time period after feeding. The authors suggest that sensory experience thus serves to "tag" key synapses and prevent them from being eliminated during subsequent sleep.

"Our results suggest that extensive structural reorganization of the circuitry in the olfactory bulb occurs during the period after feeding and that this reorganization reflects sensory experience from the preceding waking period," concludes Dr. Yamaguchi. "Complex mechanisms of experience-dependent reorganization in the olfactory bulb will likely be revealed in the framework of two sequential behavioral periods, the waking period with olfactory behavior and the rest/sleep period that follows olfactory behavior."


'/>"/>

Contact: Elisabeth (Lisa) Lyons
elyons@cell.com
617-386-2121
Cell Press
Source:Eurekalert

Related biology news :

1. New perspectives on sensory mechanisms
2. For hearing parts of brain, deafness reorganizes sensory inputs, not behavioral function
3. Hearing colors, seeing sounds: New research explores sensory overlap in the brain
4. Tuning into cell signals that tell where sensory organs will form inside the ear
5. Researchers demystifying complex cellular communications hubs found in sensory neurons
6. NIDCD-funded chemosensory researchers present findings at AChemS 2010 Meeting
7. Researchers equip robot sub with sensory system inspired by blind fish
8. Diffusion of a soluble protein through a sensory cilium
9. Chloride increases response to pheromones and odors in mouse sensory neurons
10. Researchers finds hidden sensory system in the skin
11. PRS And EmSense Partner To Integrate Bio-Sensory Measures In Packaging Research Studies
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:1/22/2016)... , Jan. 22, 2016 ... the addition of the "Global Biometrics ... to their offering. --> ... the "Global Biometrics Market in Retail ... --> Research and Markets ...
(Date:1/20/2016)... , Jan. 20, 2016   MedNet Solutions ... the entire spectrum of clinical research, is pleased to ... MedNet,s significant achievements are the result of the company,s ... iMedNet eClinical , it,s comprehensive, easy-to-use and ... --> Key MedNet growth achievements in ...
(Date:1/15/2016)... Jan. 15, 2016 Recent publicized breaches in ... find new ways to ensure data security and user ... and Android that ties a user,s ... it into a hardware authorization token. Customer service agents ... fingerprint on their KodeKey enabled device to verify their ...
Breaking Biology News(10 mins):
(Date:2/12/2016)... PLAINFIELD, N.J. , Feb. 12, 2016 /PRNewswire/ ... announced the second annual STRIVE (Strategies to Realize ... Duchenne muscular dystrophy (DMD). STRIVE provides funds to ... programs that will make meaningful contributions to the ... or fostering development of future patient advocates. ...
(Date:2/11/2016)... HILDEN , Germany and ... QGEN ; Frankfurt Prime Standard: ... new QIAseq Targeted RNA Panels for gene expression profiling, ... next-generation sequencing (NGS). The panels enable researchers to select ... expression fold changes and discover interactions between genes, cellular ...
(Date:2/11/2016)... , Feb. 11, 2016  Dovetail Genomics™ LLC ... its beta program for a planned metagenomic genome assembly ... the company,s metagenomic genome assembly method in a talk ... Genome Biology & Technology conference in Orlando, ... these highly complex datasets is difficult. Using its proprietary ...
(Date:2/11/2016)... ... February 11, 2016 , ... Global ... treatment clinic in Quito, Ecuador. The new facility will provide advanced protocols and ... from around the world. , The new GSCG clinic is headed by ...
Breaking Biology Technology: