Navigation Links
Sensitive laser instrument could aid search for life on Mars
Date:10/15/2008

IDAHO FALLS -- Minuscule traces of cells can be detected in a mineral likely present on Mars, a new study shows. The results, obtained using a technique developed at the U.S. Department of Energy's Idaho National Laboratory, could help mission scientists choose Martian surface samples with the most promise for yielding signs of life.

INL's instrument blasts off tiny bits of mineral and looks for chemical signatures of molecules commonly found in cells. While other methods require extensive sample handling, this analysis relies on a "point-and-shoot" laser technique that preserves more of the rock and reduces contamination risk. In the current online issue of the peer-reviewed Geomicrobiology Journal, the researchers report they could detect biomolecules at concentrations as low as 3 parts per trillion.

High sensitivity is crucial for NASA's search for life on Mars, says INL scientist Jill Scott, whose team collaborated with researchers at the University of Montana-Missoula on the study.

"The worst-case scenario is a false negative," Scott says. "If you're just missing stuff, that would be devastating."

While other techniques also have achieved parts-per-trillion sensitivity, they often require scientists to first extract the organic cell remnants from the mineral. This type of preparation can use up large amounts of sample and potentially introduce contamination.

INL's method is based on a technique called laser desorption mass spectroscopy. By focusing a laser beam on a spot less than one-hundredth the width of a pencil point, the researchers can knock microscopic fragments off the mineral. Those fragments react with organic molecules to form detectable charged particles called ions. The team can then study the ion patterns for signatures that might be specific to biomolecules.

Typically, this method would require the organic molecules to be embedded in a synthetic matrix that encourages ion formation. But the INL team simply relies on the rock to act as the matrix, eliminating the need for sample preparation.

"We thought, what can the rock do for you?" Scott says. "You don't want to damage the sample more than you have to. You'd like to just shoot it directly."

With funding from NASA's Astrobiology program, the researchers have done previous studies showing that minerals like halite and jarosite yield distinct ion patterns when organic molecules are present. This time, they tried thenardite, a compound thought to be part of the Martian surface. Because thenardite is left behind when lakes dry up, its presence could signify the past existence of water -- and hence life.

The team tested thenardite samples taken from the evaporated Searles Lake bed in California. They also created artificial thenardite samples that contained traces of stearic acid, which is left behind by dead cells, and glycine, the simplest amino acid used by organisms on Earth. In all cases, the researchers found a distinct ion pattern that did not appear for thenardite alone, suggesting they had detected a signature for the biomolecules.

The team also measured the sensitivity of its instrument for the first time. By testing more and more dilute artificial samples, they found they could detect the stearic acid signature at levels as low as 3 parts per trillion. In fact, the signatures became even more distinct as concentration dropped, presumably because more ion-producing matrix surrounded each biomolecule.

While the instrument is too big to send into space, it could potentially be used for analysis if NASA brings Martian samples back to Earth. The INL study also could help determine which samples should be collected, based on how likely they are to show signs of life. Thenardite and jarosite look the most promising, Scott says, while hematite -- an iron-based compound common on the Martian surface -- has yielded poor results so far.

"The wider the variety of minerals we test, the larger the suite we can target on Mars," says collaborator Nancy Hinman, a geochemist at the University of Montana-Missoula.

The team's next step is to improve the laser on its machine. Right now, the instrument is ionizing only about 10 percent of the available biomolecules in the sample. If the remaining biomolecules could be ionized with a better laser, Scott says, the detection level could increase tenfold.


'/>"/>

Contact: Roberta Kwok
Roberta.Kwok@inl.gov
208-526-2941
DOE/Idaho National Laboratory
Source:Eurekalert

Related biology news :

1. Caltech scientists engineer supersensitive receptor, gain better understanding of dopamine system
2. Sensitive nanowire disease detectors made by Yale scientists
3. For insulin sensitive overweight patients, 1 session of exercise improves metabolic health
4. More sensitive radiology monitoring in the Basque Country
5. Researchers develop new ultrasensitive assay to detect most poisonous substance known
6. New chemically-sensitive MRI scan may bypass some invasive diagnostic tests in next decade
7. Life under the laser
8. Laser fluorescence could find life on Mars
9. Argonne scientists use lasers to align molecules
10. Detecting dangerous chemicals with lasers, exploring the brains circuitry with light and more
11. Cleaner diesels thanks to laser light
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/9/2016)... an innovation leader in attendance control systems is proud to announce the introduction of ... make sure the right employees are actually signing in, and to even control the ... ... ... ...
(Date:6/2/2016)... LONDON , June 2, 2016 ... has awarded the 44 million US Dollar project, ... Security Embossed Vehicle Plates including Personalization, Enrolment, and IT Infrastructure ... world leader in the production and implementation of Identity Management ... in January, however Decatur was selected ...
(Date:5/24/2016)... Ampronix facilitates superior patient care by providing unparalleled technology to leaders of ... the latest premium product recently added to the range of products distributed by Ampronix. ... ... ... Medical Display- Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/23/2016)... ... June 23, 2016 , ... Charm Sciences, Inc. is pleased ... received AOAC Research Institute approval 061601. , “This is another AOAC-RI approval of ... Salter, Vice President of Regulatory and Industrial Affairs. “The Peel Plate methods perform ...
(Date:6/23/2016)... ... June 23, 2016 , ... Supplyframe, ... of the Supplyframe Design Lab . Located in Pasadena, Calif., the Design ... of how hardware projects are designed, built and brought to market. , The ...
(Date:6/23/2016)... June 23, 2016  Blueprint Bio, a company dedicated ... the medical community, has closed its Series A funding ... . "We have received a commitment from ... we need to meet our current goals," stated ... the runway to complete validation on the current projects ...
(Date:6/23/2016)... ... June 23, 2016 , ... ... and technical consulting, provides a free webinar on Performing Quality Investigations: ... 2016 at 12pm CT at no charge. , Incomplete investigations are still a ...
Breaking Biology Technology: