Navigation Links
'Selfish' DNA in animal mitochondria offers possible tool to study aging
Date:8/10/2012

CORVALLIS, Ore. Researchers at Oregon State University have discovered, for the first time in any animal species, a type of "selfish" mitochondrial DNA that is actually hurting the organism and lessening its chance to survive and bears a strong similarity to some damage done to human cells as they age.

The findings, just published in the journal PLoS One, are a biological oddity previously unknown in animals. But they may also provide an important new tool to study human aging, scientists said.

Such selfish mitochondrial DNA has been found before in plants, but not animals. In this case, the discovery was made almost by accident during some genetic research being done on a nematode, Caenorhabditis briggsae a type of small roundworm.

"We weren't even looking for this when we found it, at first we thought it must be a laboratory error," said Dee Denver, an OSU associate professor of zoology. "Selfish DNA is not supposed to be found in animals. But it could turn out to be fairly important as a new genetic model to study the type of mitochondrial decay that is associated with human aging."

DNA is the material that holds the basic genetic code for living organisms, and through complex biological processes guides beneficial cellular functions. Some of it is also found in the mitochondria, or energy-producing "powerhouse" of cells, which at one point in evolution was separate from the other DNA.

The mitochondria generally act for the benefit of the cell, even though it is somewhat separate. But the "selfish" DNA found in some plant mitochondria and now in animals has major differences. It tends to copy itself faster than other DNA, has no function useful to the cell, and in some cases actually harms the cell. In plants, for instance, it can affect flowering and sometimes cause sterility.

"We had seen this DNA before in this nematode and knew it was harmful, but didn't realize it was selfish," said Katie Clark, an OSU postdoctoral fellow. "Worms with it had less offspring than those without, they had less muscle activity. It might suggest that natural selection doesn't work very well in this species."

That's part of the general quandary of selfish DNA in general, the scientists said. If it doesn't help the organism survive and reproduce, why hasn't it disappeared as a result of evolutionary pressure? Its persistence, they say, is an example of how natural selection doesn't always work, either at the organism or cellular level. Biological progress is not perfect.

In this case, the population sizes of the nematode may be too small to eliminate the selfish DNA, researchers said.

What's also interesting, they say, is that the defects this selfish DNA cause in this roundworm are surprisingly similar to the decayed mitochondrial DNA that accumulates as one aspect of human aging. More of the selfish DNA is also found in the worms as they age.

Further study of these biological differences may help shed light on what can cause the mitochondrial dysfunction, Denver said, and give researchers a new tool with which to study the aging process.


'/>"/>
Contact: Dee Denver
denvedee@cgrb.oregonstate.edu
541-737-3698
Oregon State University
Source:Eurekalert

Related biology news :

1. PETA files complaint with European ombudsman over animal testing for REACH
2. Ion selectivity in neuronal signaling channels evolved twice in animals
3. International congress on behavior, animal husbandry and animal well-being in Vienna
4. Environmental concerns increasing infectious disease in amphibians, other animals
5. WALTHAM® demonstrates commitment to scientific dialogue and exchange at international human animal interaction conference
6. Animal reservoir mystery solved
7. T cells hunt parasites like animal predators seek prey, a Penn Vet-Penn Physics study reveals
8. Deep sea animals stowaway on submarines and reach new territory
9. Elephant seal tracking reveals hidden lives of deep-diving animals
10. China poised to accept first-ever non-animal test method for cosmetics
11. NOAA discovers way to detect low-level exposure to seafood toxin in marine animals
Post Your Comments:
*Name:
*Comment:
*Email:
(Date:6/16/2016)... 2016 The global ... reach USD 1.83 billion by 2024, according to ... Technological proliferation and increasing demand in commercial buildings, ... drive the market growth.      (Logo: ... development of advanced multimodal techniques for biometric authentication ...
(Date:6/3/2016)... Das DOTM (Department ... hat ein 44 Millionen $-Projekt ... einschließlich Personalisierung, Registrierung und IT-Infrastruktur, an Decatur ... Implementierung von Identitätsmanagementlösungen. Zahlreiche renommierte internationale Anbieter ... aber Decatur wurde als konformste und innovativste ...
(Date:5/24/2016)... , May 24, 2016 Ampronix facilitates superior patient care by providing unparalleled ... medical LCD display is the latest premium product recently added to the range of ... ... ... Sony 3d Imaging- LCD Medical Display- Ampronix News ...
Breaking Biology News(10 mins):
(Date:6/27/2016)... June 27, 2016  Global demand for enzymes ... through 2020 to $7.2 billion.  This market includes ... cleaning products, biofuel production, animal feed, and other ... and biocatalysts). Food and beverages will remain the ... increasing consumption of products containing enzymes in developing ...
(Date:6/27/2016)... , ... June 27, 2016 , ... ... their findings on what they believe could be a new and helpful biomarker ... new research. Click here to read it now. , Biomarkers are ...
(Date:6/27/2016)... Hill, N.C. (PRWEB) , ... June 27, 2016 ... ... U.S. commercial operations for Amgen, will join the faculty of the University ... serve as adjunct professor of strategy and entrepreneurship at UNC Kenan-Flagler, with a ...
(Date:6/24/2016)... TOKYO , June 24, 2016  Regular discussions on ... to take place between the two entities said Poloz. ... in Ottawa , he pointed to the ... and the federal government. ... Poloz said, "Both institutions have common economic goals, why not ...
Breaking Biology Technology: